Open Access
CC BY-NC-ND 4.0 · SynOpen 2022; 06(01): 7-10
DOI: 10.1055/s-0040-1719868
paper
Virtual Collection in Honor of Prof. Issa Yavari

Synthesis of [1,4]Oxathiepino[5,6-b]quinolines via Base-Mediated Intramolecular Hydroalkoxylation

Authors

  • Maryam-Sadat Tonekaboni

    a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
  • Zahra Tanbakouchian

    a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
  • Soma Majedi

    b   Medical Analysis Department, Faculty of Science, Tishk International University, Erbil, Kurdistan Region, Iraq
  • Morteza Shiri

    a   Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran

We are thankful to Alzahra University and the Iran National Science Foundation (INSF) for financial support.


Graphical Abstract

Preview

This paper is dedicated to Prof. Issa Yavari.

Abstract

A base-mediated intramolecular hydroalkoxylation that was used to prepare a series of seven-membered S,O-heterocycles is described. 2-Thiopropargyl-3-hydroxymethyl quinolines were prepared starting from 2-mercaptoquinoline-3-carbaldehydes, via S-propargylation and reduction of a formyl group. Interestingly, 2-mercaptopropargyl-3-hydroxymethyl quinolines were converted into the corresponding oxathiepinoquinolines in the presence of t-BuOK. It is proposed that the S-propargyl moiety, in the presence of base, is converted into its allenyl isomer; subsequent addition of a hydroxyl group to the terminal double bond yields the 3-methyl-5H-[1,4]oxathiepino[5,6-b]quinoline in good to high yield. Notably, the procedure is adaptable to the conversion of N-propargyl indole-2-methanol into the corresponding intramolecular hydroalkoxylation product.

Supporting Information



Publication History

Received: 24 September 2021

Accepted after revision: 20 December 2021

Article published online:
10 January 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany