CC BY 4.0 · SynOpen 2023; 07(03): 313-321
DOI: 10.1055/s-0040-1720079
paper

DMSO arbitrated Oxidative Annulation Followed by Homologated N-Alkylation: Microwave-Assisted Efficient and Greener Approach to Access 3-(3-Oxo-3-arylpropyl) Quinazolinones

A. V. G. Prasanthi
a   Fluoro & Agrochemicals, CSIR - Indian Institute of Chemical Technology, Hyderabad - 500 007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
,
a   Fluoro & Agrochemicals, CSIR - Indian Institute of Chemical Technology, Hyderabad - 500 007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
› Author Affiliations
The authors thank the CSIR - Indian Institute of Chemical Technology (CSIR-IICT). AVG Prasanthi thanks Department of Science and Technology (DST), Ministry of Science and Technology, India for INSPIRE doctoral fellowship.


Abstract

A convenient, time efficient, tandem approach for the synthesis of medicinally privileged 3-(3-oxo-3-arylpropyl) quinazolinones is developed from ubiquitously available acetophenones and anthranilamide via microwave irradiation. This transition-metal-free reaction is initiated by the oxidative annulation of anthranilamide and in situ generation of α,β-unsaturated carbonyl compounds from aryl ketones in the presence of K2S2O8 and dimethyl sulfoxide. The latter acts as a source of two carbons [methine (=CH–) and methylene (–CH2–)] apart from being the solvent. The reaction is carried out under microwave irradiation which has the advantage of homogenous heat distribution, reducing the reaction time drastically compared to the conventional heating reaction.

Supporting Information



Publication History

Received: 25 May 2023

Accepted after revision: 07 July 2023

Article published online:
08 August 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wu X.-F, Natte K. Adv. Synth. Catal. 2016; 358: 336
    • 1b Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J. Org. Chem. 2014; 79: 4125
    • 1c Zierkiewicz W, Privalov T. Organometallics 2005; 24: 6019
    • 1d Soroko I, Bhole Y, Livingston AG. Green Chem. 2011; 13: 162
    • 2a Guo T, Wei X.-N, Zhang M, Liu Y, Zhu L.-M, Thao Y.-H. Chem. Commun. 2020; 56: 5751
    • 2b Kornblum N, Jones WJ, Anderson GJ. J. Am. Chem. Soc. 1959; 81: 4113
    • 2c Chebolu R, Bahuguna A, Sharma R, Kumar Mishra V, Ravikumar PC. Chem. Commun. 2015; 51: 15438
    • 2d Xu GG, Etzkorn FA. Org. Lett. 2010; 12: 696
    • 3a Jiang S, Yang Z, Guo Z, Li Y, Chen L, Zhu Z, Chen X. Org. Biomol. Chem. 2019; 17: 7416
    • 3b Yao B, Song R.-J, Liu Y, Xie Y.-X, Li J.-H, Wang M.-K, Tang R.-Y, Zhang X.-G, Deng C.-L. Adv. Synth. Catal. 2012; 354: 1890
    • 4a Luo R, Guo L, Liu W, Wang S. Synth. Commun. 2021; 11: 1712
    • 4b Zheng K, Zhuang S, Shu W, Wu Y, Yang C, Wu A. Chem. Commun. 2018; 54: 11897
    • 4c Liu P, Shen Z, Yuan Y, Sun P. Org. Biomol. Chem. 2016; 14: 6523
    • 4d Zhang L, Liu S, Lin Y, Wang Y. Tetrahedron Lett. 2022; 93: 153663
    • 5a Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725
    • 5b Zheng K, Liu B, Chen S, Chen F. Tetrahedron Lett. 2013; 54: 5250
    • 5c Jiang X, Wang J.-M, Zhang Y, Chen Z, Zhu Y.-M, Ji S.-J. Tetrahedron 2015; 71: 4883
    • 6a Chu L, Yue X, Qing F.-L. Org. Lett. 2010; 12: 1644
    • 6b Devari S, Kumar A, Deshidi R, Ali Shah B. Chem. Commun. 2015; 51: 5013
    • 6c Gao X, Pan X, Gao J, Jiang H, Yuan G, Li Y. Org. Lett. 2015; 17: 1038
    • 6d Li X, Wang X, Li Y, Xiao J, Du Y. Org. Biomol. Chem. 2022; 20: 4471
    • 7a Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
    • 7b Kumari S, Maddeboina K, Bachu RD, Boddu SH. S, Trippier PC, Tiwari AK. Drug Discov. Today 2022; 27: 103322
    • 7c Arif M, Turgut K, Yakup S. Bioorg. Chem. 2021; 114: 105076
    • 8a Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
    • 8b Shang X.-F, Morris-Natschke SL, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Yang G.-Z, Lee K.-H. Med. Res. Rev. 2018; 38: 775
    • 8c Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336
    • 9a Khan I, Ibrar A, Ahmed W, Saeed A. Eur. J. Med. Chem. 2015; 90: 124
    • 9b Mohamed MA, Ayyad RR, Shawer TZ, Abdel-Aziz AA.-M, El-Azab AS. Eur. J. Med. Chem. 2016; 112: 106
  • 10 Singh H, Deep K. Tetrahedron 1984; 40: 4937
  • 11 Wang C, Ji X, Deng G.-J, Huang H. Org. Biomol. Chem. 2022; 20: 1200
  • 12 Yadav P, Yadav S, Awasthi A, Phanindrudu M, Bhowmick S, Kumar Tiwari D. New J. Chem. 2022; 46: 16289
  • 13 Zhu Y.-P, Fei Z, Liu M.-C, Jia F.-C, Wu A.-X. Org. Lett. 2013; 15: 378
  • 14 Nguyen TB, Hou JH, Retailleau P. Adv. Synth. Catal. 2019; 361: 3337
  • 15 Mohammed S, Vishwakarma RA, Bharate SB. J. Org. Chem. 2015; 80: 6915
  • 16 Gajula KS, Mameda N, Kodumuri S, Chevella D, Banothu R, Amrutham V, Kutepov BI, Nama N. Synth. Commun. 2018; 48: 2866
    • 17a Lee S, Sim J, Jo H, Viji M, Srinu L, Lee K, Lee H, Manjunatha V, Jung J.-K. Org. Biomol. Chem. 2019; 17: 8067
    • 17b Liu Y.-F, Ji P.-Y, Xu J.-W, Hu Y.-Q, Liu Q, Luo W.-P, Guo C.-C. J. Org. Chem. 2017; 82: 7159
    • 18a Gawande MB, Shelke SN, Zboril R, Varma RS. Acc. Chem. Res. 2014; 47: 1338
    • 18b Martina K, Cravotto G, Varma RS. J. Org. Chem. 2021; 86: 13857
    • 19a Ramu G, Tangella Y, Ambala S, Babu BN. J. Org. Chem. 2020; 85: 5370
    • 19b Ramu G, Ambala S, Babu Nanubolu J, Babu BN. RSC Adv. 2019; 9: 35068
    • 19c Tangella Y, Manasa KL, Krishna NH, Sridhar B, Kamal A, Babu BN. Org. Lett. 2018; 20: 3639