CC BY-NC-ND 4.0 · Organic Materials 2021; 03(01): 001-016
DOI: 10.1055/s-0040-1722305
Short Review

Controlling the Film Microstructure in Organic Thermoelectrics

a   College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
,
a   College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
,
a   College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
› Author Affiliations
Funding Information This work is supported by the National Key R&D Program of China (2017YFA0204701) and the National Natural Science Foundation of China (21790260, 21722201).


Abstract

Doping is a vital method to increase the charge carrier concentration of conjugated polymers, thus improving the performance of organic electronic devices. However, the introduction of dopants may cause phase separation. The miscibility of dopants and polymers as well as the doping-induced microstructure change are always the barriers in the way to further enhance the thermoelectrical performance. Here, recent research studies about the influence of molecular doping on the microstructures of conjugated polymers are summarized, with an emphasis on the n-type doping. Highlighted topics include how to control the distribution and density of dopants within the conjugated polymers by modulating the polymer structure, dopant structure, and solution-processing method. The strong Coulombic interactions between dopants and polymers as well as the heterogeneous doping process of polymers can hinder the polymer film to achieve better miscibility of dopants/polymer and further loading of the charge carriers. Recent developments and breakthroughs provide guidance to control the film microstructures in the doping process and achieve high-performance thermoelectrical materials.



Publication History

Received: 08 October 2020

Accepted: 09 December 2020

Article published online:
11 January 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lee S, Kwon JH, Kwon S, Choi KC. IEEE Trans. Electron Devices 2017; 64: 1922
    • 2a Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew. Chem. Int. Ed. 2008; 47: 4070
    • 2b Di CA, Zhang F, Zhu D. Adv. Mater. 2013; 25: 313
    • 3a Bubnova O, Crispin X. Energy Environ. Sci. 2012; 5: 9345
    • 3b Culebras M, Gómez CM, Cantarero A. Materials 2014; 7: 6701
    • 3c Poehler TO, Katz HE. Energy Environ. Sci. 2012; 5: 8110
    • 3d Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Nat. Rev. Mater. 2016; 1: 16050
    • 3e Yang J, Yip H.-L., Jen AK.-Y. Adv. Energy Mater. 2013; 3: 549
    • 3f Zhao W, Ding J, Zou Y, Di CA, Zhu D. Chem. Soc. Rev. 2020; 49: 7210
    • 4a Chen Y, Zhao Y, Liang Z. Energy Environ. Sci. 2015; 8: 401
    • 4b Zhang Q, Sun Y, Xu W, Zhu D. Adv. Mater. 2014; 26: 6829
  • 5 Kim GH, Shao L, Zhang K, Pipe KP. Nat. Mater. 2013; 12: 719
    • 6a Ferhat S, Domain C, Vidal J, Noël D, Ratier B, Lucas B. Sustainable Energy Fuels 2018; 2: 199
    • 6b We JH, Kim SJ, Cho BJ. Energy 2014; 73: 506
    • 6c Zhang B, Sun J, Katz HE, Fang F, Opila RL. ACS Appl. Mater. Interfaces 2010; 2: 3170
    • 7a Kim D, Kim Y, Choi K, Grunlan JC, Yu C. ACS Nano 2010; 4: 513
    • 7b Yu C, Choi K, Yin L, Grunlan JC. ACS Nano 2011; 5: 7885
    • 8a Gao J, Niles ET, Grey JK. J. Phys. Chem. Lett. 2013; 4: 2953
    • 8b Gao J, Stein BW, Thomas AK, Garcia JA, Yang J, Kirk ML, Grey JK. J. Phys. Chem. C 2015; 119: 16396
    • 8c Jacobs IE, Aasen EW, Oliveira JL, Fonseca TN, Roehling JD, Li J, Zhang G, Augustine MP, Mascal M, Moulé AJ. J. Mater. Chem. C 2016; 4: 3454
    • 8d Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I, Nikolka M, Fei Z, Heeney M, Matsumoto D, Marumoto K, Tanaka H, Kuroda S, Sirringhaus H. Nat. Mater. 2016; 15: 896
    • 8e Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P. Phys. Rev. B: Condens. Matter 2001; 64: 195208
    • 8f Pingel P, Neher D. Phys. Rev. B: Condens. Matter 2013; 87: 115209
    • 9a Jacobs IE, Cendra C, Harrelson TF, Bedolla Valdez ZI, Faller R, Salleo A, Moulé AJ. Mater. Horiz. 2018; 5: 655
    • 9b Zheng Y.-Q., Yao Z.-F., Lei T, Dou J.-H., Yang C.-Y., Zou L, Meng X, Ma W, Wang J.-Y., Pei J. Adv. Mater. 2017; 29: 1701072
  • 10 Rivnay J, Mannsfeld SC. B, Miller CE, Salleo A, Toney MF. Chem. Rev. 2012; 112: 5488
    • 11a Kang SD, Snyder GJ. Nat. Mater. 2016; 16: 252
    • 11b Noriega R, Rivnay J, Vandewal K, Koch FP. V, Stingelin N, Smith P, Toney MF, Salleo A. Nat. Mater. 2013; 12: 1038
    • 12a Boyle CJ, Upadhyaya M, Wang P, Renna LA, Lu-Díaz M, Pyo Jeong S, Hight-Huf N, Korugic-Karasz L, Barnes MD, Aksamija Z, Venkataraman D. Nat. Commun. 2019; 10: 2827
    • 12b Fontana MT, Stanfield DA, Scholes DT, Winchell KJ, Tolbert SH, Schwartz BJ. J. Phys. Chem. C 2019; 123: 22711
    • 12c Kang K, Schott S, Venkateshvaran D, Broch K, Schweicher G, Harkin D, Jellett C, Nielsen CB, McCulloch I, Sirringhaus H. Mater. Today Phys. 2019; 8: 112
    • 12d Lim E, Peterson KA, Su GM, Chabinyc ML. Chem. Mater. 2018; 30: 998
    • 12e Patel SN, Glaudell AM, Peterson KA, Thomas EM, O'Hara KA, Lim E, Chabinyc ML. Sci. Adv. 2017; 3: e1700434
    • 12f Sun Y, Di C.-A., Xu W, Zhu D. Adv. Electron. Mater. 2019; 5: 1800825
    • 13a Mazaheripour A, Thomas EM, Segalman RA, Chabinyc ML. Macromolecules 2019; 52: 2203
    • 13b Steyrleuthner R, Schubert M, Howard I, Klaumünzer B, Schilling K, Chen Z, Saalfrank P, Laquai F, Facchetti A, Neher D. J. Am. Chem. Soc. 2012; 134: 18303
    • 13c Wang Z.-Y., Yao Z.-F., Lu Y, Ding L, Yu Z.-D., You H.-Y., Wang X.-Y., Zhou Y.-Y., Zou L, Wang J.-Y., Pei J. Polym. Chem. 2020; 11: 3716
    • 13d Yao Z.-F., Wang Z.-Y., Wu H.-T., Lu Y, Li Q.-Y., Zou L, Wang J.-Y., Pei J. Angew. Chem. Int. Ed. 2020; 59: 17467
  • 14 Wang Y, Yang L, Shi XL, Shi X, Chen L, Dargusch MS, Zou J, Chen ZG. Adv. Mater. 2019; 31: 1807916
    • 15a Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J.-L.. Chem. Rev. 2007; 107: 926
    • 15b Noriega R, Rivnay J, Vandewal K, Koch FP. V, Stingelin N, Smith P, Toney MF, Salleo A. Nat. Mater. 2013; 12: 1038
    • 15c Rivnay J, Jimison LH, Northrup JE, Toney MF, Noriega R, Lu S, Marks TJ, Facchetti A, Salleo A. Nat. Mater. 2009; 8: 952
  • 16 Venkateshvaran D, Nikolka M, Sadhanala A, Lemaur V, Zelazny M, Kepa M, Hurhangee M, Kronemeijer AJ, Pecunia V, Nasrallah I, Romanov I, Broch K, McCulloch I, Emin D, Olivier Y, Cornil J, Beljonne D, Sirringhaus H. Nature 2014; 515: 384
  • 17 Naab BD, Gu X, Kurosawa T, To JW. F, Salleo A, Bao Z. Adv. Electron. Mater. 2016; 2: 1600004
    • 18a Liu J, Qiu L, Alessandri R, Qiu X, Portale G, Dong J, Talsma W, Ye G, Sengrian AA, Souza PC. T, Loi MA, Chiechi RC, Marrink SJ, Hummelen JC, Koster LJ. A. Adv. Mater. 2018; 30: 1704630
    • 18b Yang C.-Y., Jin W.-L., Wang J, Ding Y.-F., Nong S, Shi K, Lu Y, Dai Y.-Z., Zhuang F.-D., Lei T, Di C.-A., Zhu D, Wang J.-Y., Pei J. Adv. Mater. 2018; 30: 1802850
    • 19a Gao J, Roehling JD, Li Y, Guo H, Moulé AJ, Grey JK. J. Mater. Chem. C 2013; 1: 5638
    • 19b Li M, Balawi AH, Leenaers PJ, Ning L, Heintges GH. L, Marszalek T, Pisula W, Wienk MM, Meskers SC. J, Yi Y, Laquai F, Janssen RA. J. Nat. Commun. 2019; 10: 2867
    • 19c Yao Z.-F., Zheng Y.-Q., Li Q.-Y., Lei T, Zhang S, Zou L, Liu H.-Y., Dou J.-H., Lu Y, Wang J.-Y., Gu X, Pei J. Adv. Mater. 2018; 31: 1806747
    • 20a Cochran JE, Junk MJ. N, Glaudell AM, Miller PL, Cowart JS, Toney MF, Hawker CJ, Chmelka BF, Chabinyc ML. Macromolecules 2014; 47: 6836
    • 20b Salzmann I, Heimel G, Oehzelt M, Winkler S, Koch N. Acc. Chem. Res. 2016; 49: 370
  • 21 Yan X, Xiong M, Li J.-T., Zhang S, Ahmad Z, Lu Y, Wang Z.-Y., Yao Z.-F., Wang J.-Y., Gu X, Lei T. J. Am. Chem. Soc. 2019; 141: 20215
    • 22a Méndez H, Heimel G, Winkler S, Frisch J, Opitz A, Sauer K, Wegner B, Oehzelt M, Röthel C, Duhm S, Többens D, Koch N, Salzmann I. Nat. Commun. 2015; 6: 8560
    • 22b Salzmann I, Heimel G, Duhm S, Oehzelt M, Pingel P, George BM, Schnegg A, Lips K, Blum R.-P., Vollmer A, Koch N. Phys. Rev. Lett. 2012; 108: 035502
    • 22c Tietze ML, Benduhn J, Pahner P, Nell B, Schwarze M, Kleemann H, Krammer M, Zojer K, Vandewal K, Leo K. Nat. Commun. 2018; 9: 1182
  • 23 Binnig G, Quate CF, Gerber C. Phys. Rev. Lett. 1986; 56: 930
    • 24a Sahin O, Magonov S, Su C, Quate CF, Solgaard O. Nat. Nanotechnol. 2007; 2: 507
    • 24b Villarrubia JS. J. Res. Natl. Inst. Stand. Technol. 1997; 102: 425
    • 25a Dazzi A, Prater CB, Hu Q, Chase DB, Rabolt JF, Marcott C. Appl. Spectrosc. 2012; 66: 1365
    • 25b Dazzi A, Prazeres R, Glotin F, Ortega JM. Opt. Lett. 2005; 30: 2388
  • 27 Pingree LS. C, Reid OG, Ginger DS. Adv. Mater. 2009; 21: 19
    • 28a Liscio A, Palermo V, Samorì P. Adv. Funct. Mater. 2008; 18: 907
    • 28b Melitz W, Shen J, Kummel AC, Lee S. Surf. Sci. Rep. 2011; 66: 1
  • 29 Jenkins JL, Lee PA, Nebesny KW, Ratcliff EL. J. Mater. Chem. A 2014; 2: 19221
  • 30 Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K. Adv. Mater. 2009; 21: 209
  • 31 Baker JL, Jimison LH, Mannsfeld S, Volkman S, Yin S, Subramanian V, Salleo A, Alivisatos AP, Toney MF. Langmuir 2010; 26: 9146
  • 32 Ma W, Shi K, Wu Y, Lu Z.-Y., Liu H.-Y., Wang J.-Y., Pei J. ACS Appl. Mater. Interfaces 2016; 8: 24737
    • 33a Ma W, Tumbleston JR, Wang M, Gann E, Huang F, Ade H. Adv. Energy Mater. 2013; 3: 864
    • 33b Ma W, Tumbleston JR, Ye L, Wang C, Hou J, Ade H. Adv. Mater. 2014; 26: 4234
    • 34a Kiefer D, Giovannitti A, Sun H, Biskup T, Hofmann A, Koopmans M, Cendra C, Weber S, Anton Koster LJ, Olsson E, Rivnay J, Fabiano S, McCulloch I, Müller C. ACS Energy Lett. 2018; 3: 278
    • 34b Liu J, Ye G, Zee Bd, Dong J, Qiu X, Liu Y, Portale G, Chiechi RC, Koster LJ. A. Adv. Mater. 2018; 30: 1804290
    • 34c Mai C.-K., Schlitz RA, Su GM, Spitzer D, Wang X, Fronk SL, Cahill DG, Chabinyc ML, Bazan GC. J. Am. Chem. Soc. 2014; 136: 13478
    • 34d Shin Y, Massetti M, Komber H, Biskup T, Nava D, Lanzani G, Caironi M, Sommer M. Adv. Electron. Mater. 2018; 4: 1700581
    • 34e Wang S, Fazzi D, Puttisong Y, Jafari MJ, Chen Z, Ederth T, Andreasen JW, Chen WM, Facchetti A, Fabiano S. Chem. Mater. 2019; 31: 3395
    • 34f Wang S, Sun H, Erdmann T, Wang G, Fazzi D, Lappan U, Puttisong Y, Chen Z, Berggren M, Crispin X, Kiriy A, Voit B, Marks TJ, Fabiano S, Facchetti A. Adv. Mater. 2018; 30: 1801898
  • 35 Schlitz RA, Brunetti FG, Glaudell AM, Miller PL, Brady MA, Takacs CJ, Hawker CJ, Chabinyc ML. Adv. Mater. 2014; 26: 2825
  • 36 Perry EE, Chiu C.-Y., Moudgil K, Schlitz RA, Takacs CJ, O'Hara KA, Labram JG, Glaudell AM, Sherman JB, Barlow S, Hawker CJ, Marder SR, Chabinyc ML. Chem. Mater. 2017; 29: 9742
  • 37 Shin Y, Massetti M, Komber H, Biskup T, Nava D, Lanzani G, Caironi M, Sommer M. Adv. Electron. Mater. 2018; 4: 1700581
  • 38 Yuan D, Huang D, Rivero SM, Carreras A, Zhang C, Zou Y, Jiao X, McNeill CR, Zhu X, Di C.-a., Zhu D, Casanova D, Casado J. Chem 2019; 5: 964
  • 39 Ding J, Liu Z, Zhao W, Jin W, Xiang L, Wang Z, Zeng Y, Zou Y, Zhang F, Yi Y, Diao Y, McNeill CR, Di C.-a., Zhang D, Zhu D. Angew. Chem. Int. Ed. 2019; 58: 18994
    • 40a Li J, Rochester CW, Jacobs IE, Aasen EW, Friedrich S, Stroeve P, Moulé AJ. Org. Electron. 2016; 33: 23
    • 40b Liang Z, Zhang Y, Souri M, Luo X, Boehm AM, Li R, Zhang Y, Wang T, Kim D.-Y., Mei J, Marder SR, Graham KR. J. Mater. Chem. A 2018; 6: 16495
    • 40c Tietze ML, Pahner P, Schmidt K, Leo K, Lüssem B. Adv. Funct. Mater. 2015; 25: 2701
  • 41 Un H.-I., Gregory SA, Mohapatra SK, Xiong M, Longhi E, Lu Y, Rigin S, Jhulki S, Yang C.-Y., Timofeeva TV, Wang J.-Y., Yee SK, Barlow S, Marder SR, Pei J. Adv. Energy Mater. 2019; 9: 1900817
  • 42 Yang C.-Y., Ding Y.-F., Huang D, Wang J, Yao Z.-F., Huang C.-X., Lu Y, Un H.-I., Zhuang F.-D., Dou J.-H., Di CA, Zhu D, Wang J.-Y., Lei T, Pei J. Nat. Commun. 2020; 11: 3292
    • 43a Lu Y, Yu Z.-D., Liu Y, Ding Y.-F., Yang C.-Y., Yao Z.-F., Wang Z.-Y., You H.-Y., Cheng X.-F., Tang B, Wang J.-Y., Pei J. J. Am. Chem. Soc. 2020; 142: 15340
    • 43b Shi K, Lu Z.-Y., Yu Z.-D., Liu H.-Y., Zou Y, Yang C.-Y., Dai Y.-Z., Lu Y, Wang J.-Y., Pei J. Adv. Electron. Mater. 2017; 3: 1700164
  • 44 Zhang Y, de Boer B, Blom PW. M. Adv. Funct. Mater. 2009; 19: 1901
    • 45a Aziz EF, Vollmer A, Eisebitt S, Eberhardt W, Pingel P, Neher D, Koch N. Adv. Mater. 2007; 19: 3257
    • 45b Karpov Y, Erdmann T, Raguzin I, Al-Hussein M, Binner M, Lappan U, Stamm M, Gerasimov KL, Beryozkina T, Bakulev V, Anokhin DV, Ivanov DA, Günther F, Gemming S, Seifert G, Voit B, Di Pietro R, Kiriy A. Adv. Mater. 2016; 28: 6003
  • 46 Jha A, Duan H.-G., Tiwari V, Thorwart M, Miller RJ. D. Chem. Sci. 2018; 9: 4468
  • 47 Jacobs IE, Li J, Burg SL, Bilsky DJ, Rotondo BT, Augustine MP, Stroeve P, Moulé AJ. ACS Nano 2015; 9: 1905
  • 48 Kroon R, Mengistie DA, Kiefer D, Hynynen J, Ryan JD, Yu L, Müller C. Chem. Soc. Rev. 2016; 45: 6147
    • 49a Ingram ID. V, Tate DJ, Parry AV. S, Sprick RS, Turner ML. Appl. Phys. Lett. 2014; 104: 153304
    • 49b Scholes DT, Hawks SA, Yee PY, Wu H, Lindemuth JR, Tolbert SH, Schwartz BJ. J. Phys. Chem. Lett. 2015; 6: 4786
  • 50 Hwang S, Potscavage WJ, Yang YS, Park IS, Matsushima T, Adachi C. Phys. Chem. Chem. Phys. 2016; 18: 29199
  • 51 Yoon SE, Kang Y, Jeon GG, Jeon D, Lee SY, Ko S.-J., Kim T, Seo H, Kim B.-G., Kim JH. Adv. Funct. Mater. 2020; 30: 2004598
    • 52a Naab BD, Guo S, Olthof S, Evans EG. B, Wei P, Millhauser GL, Kahn A, Barlow S, Marder SR, Bao Z. J. Am. Chem. Soc. 2013; 135: 15018
    • 52b Wei P, Oh JH, Dong G, Bao Z. J. Am. Chem. Soc. 2010; 132: 8852
    • 52c Yurash B, Cao DX, Brus VV, Leifert D, Wang M, Dixon A, Seifrid M, Mansour AE, Lungwitz D, Liu T, Santiago PJ, Graham KR, Koch N, Bazan GC, Nguyen T.-Q.. Nat. Mater. 2019;
    • 53a Körzdörfer T, Brédas J.-L.. Acc. Chem. Res. 2014; 47: 3284
    • 53b Shi W, Wang D, Shuai Z. Adv. Electron. Mater. 2019; 5: 1800882