CC BY-NC-ND 4.0 · Organic Materials 2021; 03(01): 017-024
DOI: 10.1055/s-0040-1722655
Original Article

Modulation of Crystallinity and Optical Properties in Composite Materials Combining Iron Oxide Nanoparticles and Dye-Containing Covalent Organic Frameworks

a   Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany
b   Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074 Würzburg, Germany
,
a   Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany
,
c   Friedrich-Alexander-Universität Erlangen-Nürnberg, Department für Chemie und Pharmazie, Anorganische Chemie, Egerlandstraße 1, 91058 Erlangen, Germany
d   Fraunhofer-Institut für Silicatforschung (ISC), Neunerplatz 2, 97082 Würzburg, Germany
,
a   Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany
b   Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074 Würzburg, Germany
› Author Affiliations
Funding Information Financial support by the Bavarian State Ministry of Science and the Arts in the Collaborative Research Network “Solar Technologies go Hybrid” is gratefully acknowledged. K.M. gratefully acknowledges funding by the DFG through grant MA 7252/4-2.


Abstract

Two series of organic–inorganic composite materials were synthesized through solvothermal imine condensation between diketopyrrolopyrrole dialdehyde DPP-1 and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) in the presence of varying amounts of either amino- or carboxy-functionalized superparamagnetic iron oxide nanoparticles (FeO). Whereas high FeO loading induced cross-linking of the inorganic nanoparticles by amorphous imine polymers, a lower FeO content resulted in the formation of crystalline covalent organic framework domains. All hybrid materials were analyzed by magnetization measurements, powder X-ray diffraction, electron microscopy, IR, and UV/Vis absorption spectroscopy. Crystallinity, chromophore stacking, and visible absorption features are directly correlated to the mass fraction of the components, thus allowing for a fine-tuning of materials properties.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1722655.


In loving memory of Dr. Ángela Valentín.


Supplementary Material



Publication History

Received: 05 November 2020

Accepted: 14 December 2020

Article published online:
18 January 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany