CC BY-NC-ND 4.0 · Organic Materials 2021; 03(01): 017-024
DOI: 10.1055/s-0040-1722655
Original Article

Modulation of Crystallinity and Optical Properties in Composite Materials Combining Iron Oxide Nanoparticles and Dye-Containing Covalent Organic Frameworks

a  Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany
b  Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074 Würzburg, Germany
,
a  Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany
,
c  Friedrich-Alexander-Universität Erlangen-Nürnberg, Department für Chemie und Pharmazie, Anorganische Chemie, Egerlandstraße 1, 91058 Erlangen, Germany
d  Fraunhofer-Institut für Silicatforschung (ISC), Neunerplatz 2, 97082 Würzburg, Germany
,
a  Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074 Würzburg, Germany
b  Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074 Würzburg, Germany
› Author Affiliations
Funding Information Financial support by the Bavarian State Ministry of Science and the Arts in the Collaborative Research Network “Solar Technologies go Hybrid” is gratefully acknowledged. K.M. gratefully acknowledges funding by the DFG through grant MA 7252/4-2.


Abstract

Two series of organic–inorganic composite materials were synthesized through solvothermal imine condensation between diketopyrrolopyrrole dialdehyde DPP-1 and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) in the presence of varying amounts of either amino- or carboxy-functionalized superparamagnetic iron oxide nanoparticles (FeO). Whereas high FeO loading induced cross-linking of the inorganic nanoparticles by amorphous imine polymers, a lower FeO content resulted in the formation of crystalline covalent organic framework domains. All hybrid materials were analyzed by magnetization measurements, powder X-ray diffraction, electron microscopy, IR, and UV/Vis absorption spectroscopy. Crystallinity, chromophore stacking, and visible absorption features are directly correlated to the mass fraction of the components, thus allowing for a fine-tuning of materials properties.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1722655.


In loving memory of Dr. Ángela Valentín.


Supplementary Material



Publication History

Received: 05 November 2020

Accepted: 14 December 2020

Publication Date:
18 January 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sanchez C, Belleville P, Popall M, Nicole L. Chem. Soc. Rev. 2011; 40: 696
    • 1b Faustini M, Nicole L, Ruiz-Hitzky E, Sanchez C. Adv. Funct. Mater. 2018; 28: 1704158
  • 2 Gower LB. Chem. Rev. 2008; 108: 4551
  • 3 Mann S. Nature 1993; 365: 499
  • 4 Müller-Buschbaum K, Beuerle F, Feldmann C. Microporous Mesoporous Mater. 2015; 216: 171
  • 5 Mandel K, Granath T, Wehner T, Rey M, Stracke W, Vogel N, Sextl G, Müller-Buschbaum K. ACS Nano 2017; 11: 779
  • 6 Seuffert MT, Wintzheimer S, Oppmann M, Granath T, Prieschl J, Alrefai A, Holdt H.-J, Müller-Buschbaum K, Mandel K. J. Mater. Chem. C 2020; 8: 16010
  • 7 Wintzheimer S, Reichstein J, Wenderoth S, Hasselmann S, Oppmann M, Seuffert MT, Müller-Buschbaum K, Mandel K. Adv. Funct. Mater. 2019; 29: 1901193
    • 8a Wehner T, Mandel K, Schneider M, Sextl G, Müller-Buschbaum K. ACS Appl. Mater. Interfaces 2016; 8: 5445
    • 8b Wehner T, Seuffert MT, Sorg JR, Schneider M, Mandel K, Sextl G, Müller-Buschbaum K. J. Mater. Chem. C 2017; 5: 10133
    • 9a Beuerle F, Gole B. Angew. Chem. Int. Ed. 2018; 57: 4850
    • 9b Bisbey RP, Dichtel WR. ACS Cent. Sci. 2017; 3: 533
    • 9c Chen X, Geng K, Liu R, Tan KT, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Angew. Chem. Int. Ed. 2020; 59: 5050
  • 10 Ding S.-Y, Wang W. Chem. Soc. Rev. 2013; 42: 548
    • 11a Rogge SM. J, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, Llabrés I. Chem. Soc. Rev. 2017; 46: 3134
    • 11b Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J. J. Am. Chem. Soc. 2018; 140: 1423
    • 11c Wang X, Chen L, Chong SY, Little MA, Wu Y, Zhu W.-H, Clowes R, Yan Y, Zwijnenburg MA, Sprick RS, Cooper AI. Nat. Chem. 2018; 10: 1180
  • 12 Dogru M, Bein T. Chem. Commun. 2014; 50: 5531
  • 13 Mandal AK, Mahmood J, Baek J.-B. ChemNanoMat 2017; 3: 373
    • 14a Grzybowski M, Gryko DT. Adv. Opt. Mater. 2015; 3: 280
    • 14b Stolte M, Suraru S.-L, Diemer P, He T, Burschka C, Zschieschang U, Klauk H, Würthner F. Adv. Funct. Mater. 2016; 26: 7415
    • 14c Soberats B, Hecht M, Würthner F. Angew. Chem. Int. Ed. 2017; 56: 10771
    • 14d Liu Q, Bottle SE, Sonar P. Adv. Mater. 2020; 32: 1903882
  • 15 Gole B, Stepanenko V, Rager S, Grüne M, Medina DD, Bein T, Würthner F, Beuerle F. Angew. Chem. Int. Ed. 2018; 57: 846
  • 16 Rager S, Jakowetz AC, Gole B, Beuerle F, Medina DD, Bein T. Chem. Mater. 2019; 31: 2707
    • 17a Pachfule P, Kandambeth S, Díaz Díaz D, Banerjee R. Chem. Commun. 2014; 50: 3169
    • 17b Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV. ACS Energy Lett. 2018; 3: 400
    • 17c Bhadra M, Kandambeth S, Sahoo MK, Addicoat M, Balaraman E, Banerjee R. J. Am. Chem. Soc. 2019; 141: 6152
    • 18a Stegbauer L, Schwinghammer K, Lotsch BV. Chem. Sci. 2014; 5: 2789
    • 18b Mullangi D, Dhavale V, Shalini S, Nandi S, Collins S, Woo T, Kurungot S, Vaidhyanathan R. Adv. Energy Mater. 2016; 6: 1600110
    • 19a Liao Y, Li J, Thomas A. ACS Macro Lett. 2017; 6: 1444
    • 19b He S, Zeng T, Wang S, Niu H, Cai Y. ACS Appl. Mater. Interfaces 2017; 9: 2959
    • 19c Romero V, Fernandes SP. S, Rodriguez-Lorenzo L, Kolen'ko YV, Espiña B, Salonen LM. Nanoscale 2019; 11: 6072
    • 20a Lin G, Gao C, Zheng Q, Lei Z, Geng H, Lin Z, Yang H, Cai Z. Chem. Commun. 2017; 53: 3649
    • 20b Li Y, Zhang H, Chen Y, Huang L, Lin Z, Cai Z. ACS Appl. Mater. Interfaces 2019; 11: 22492
    • 20c Wu Y, Sun N, Deng C. ACS Appl. Mater. Interfaces 2020; 12: 9814
    • 20d Huang L, Mao N, Yan Q, Zhang D, Shuai Q. ACS Appl. Nano Mater. 2020; 3: 319
    • 21a Wang M, Gao M, Zhang K, Wang L, Wang W, Fu Q, Xia Z, Gao D. Mikrochim. Acta 2019; 186: 827
    • 21b Deng Z.-H, Wang X, Wang X.-L, Gao C.-L, Dong L, Wang M.-L, Zhao R.-S. Mikrochim. Acta 2019; 186: 108
  • 22 Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. Angew. Chem. Int. Ed. 2016; 55: 13979
  • 23 Mandel K, Straßer M, Granath T, Dembski S, Sextl G. Chem. Commun. 2015; 51: 2863
    • 24a Mandel K, Hutter F, Gellermann C, Sextl G. ACS Appl. Mater. Interfaces 2012; 4: 5633
    • 24b Mandel K, Hutter F, Gellermann C, Sextl G. J. Magn. Magn. Mater. 2013; 331: 269
    • 24c Brede FA, Mandel K, Schneider M, Sextl G, Müller-Buschbaum K. Chem. Commun. 2015; 51: 8687
    • 24d Müssig S, Fidler F, Haddad D, Hiller KH, Wintzheimer S, Mandel K. Adv. Mater. Technol. 2019; 4: 1900300
  • 25 Wei Y, Han B, Hu X, Lin Y, Wang X, Deng X. Procedia Eng. 2012; 27: 632
  • 26 Keller N, Calik M, Sharapa D, Soni HR, Zehetmaier PM, Rager S, Auras F, Jakowetz AC, Görling A, Clark T, Bein T. J. Am. Chem. Soc. 2018; 140: 16544
  • 27 Bucher L, Tanguy L, Fortin D, Desbois N, Harvey PD, Sharma GD, Gros CP. ChemPlusChem 2017; 82: 625
    • 28a Long B, Bakr O, Stellacci F. J. Exp. Nanosci. 2008; 3: 53
    • 28b Zanetti-Polzi L, Amadei A, Djemili R, Durot S, Schoepff L, Heitz V, Ventura B, Daidone I. J. Phys. Chem. C 2019; 123: 13094
  • 29 Mandel K, Hutter F, Gellermann C, Sextl G. Colloids Surf., A 2011; 390: 173
  • 30 Huo L, Hou J, Chen H.-Y, Zhang S, Jiang Y, Chen TL, Yang Y. Macromolecules 2009; 42: 6564
  • 31 Meng S, Xu Z, Hong G, Zhao L, Zhao Z, Guo J, Ji H, Liu T. Eur. J. Med. Chem. 2015; 92: 35