Planta Medica Letters 2016; 3(01): e20-e24
DOI: 10.1055/s-0042-102200
Georg Thieme Verlag KG Stuttgart · New York

A New Dinor-cis-Labdane Diterpene and Flavonoids with Antimycobacterium Activity from Colebrookea oppositifolia

Ashish A. Chinchansure
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
Manisha Arkile
2   Combi-Chem Bio-Resource Centre, CSIR-National Chemical Laboratory, Pune, India
Dinesh R. Shinde
3   Central NMR Facility, CSIR-National Chemical Laboratory, Pune, India
Dhiman Sarkar
2   Combi-Chem Bio-Resource Centre, CSIR-National Chemical Laboratory, Pune, India
Swati P. Joshi
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
› Author Affiliations
Further Information

Publication History

received 16 October 2015
revised 15 December 2015

accepted 15 January 2016

Publication Date:
14 March 2016 (online)


The new 14,15-dinor-cis-labdane diterpene, named (+)-14,15-dinor-9α-hydroxy-cis-labd-11(E)-en-13-one (1), was isolated from the acetone extract of the aerial parts of Colebrookea oppositifolia, along with the known compounds alnustin (2), mosloflavone (3), flindulatin (4), 5,6,7-trimethoxy baicalein (5), tanetin (6), scutellarein 4′-methyl ether (7), apigenin (8), caffeic acid (9), anisofolin A (10), apigetrin (11), and forsythoside A (12). Structures of the new and known compounds were established by detailed analysis of 1D and 2D nuclear magnetic resonance studies. The isolated compounds 112 were evaluated for their antimycobacterium activity against Mycobacterium tuberculosis H37Ra and Mycobacterium bovis in both dormant and active phases. Compounds 1, 7, and 8 exhibited inhibitory activity against M. tuberculosis with IC50 values in the range of 8.1–55.0 µM (MIC 14.4–119.7 µM) in the active phase and 7.4–43.5 µM (MIC 11.5–123.3 µM) in the dormant phase. Similarly 1, 7, and 8 exhibited inhibitory activity against M. bovis with IC50 values in the range of 4.1–98.5 µM (MIC 13.7–161.0 µM) in the active phase and 4.1–111.1 µM (MIC 13.0–166.4 µM) in the dormant phase.

Supporting Information

  • References

  • 1 Bhatnagar SS, Chopra RN, Prashad B, Ghosh JC, Saha MN, Lala SR, Santapau H, Sastri BN. The Wealth of India: a dictionary of Indian raw materials & industrial products, Vol. 2. New Delhi: CSIR; 1950: 308
  • 2 Yang F, Li XC, Wang HQ, Yang CR. Flavonoid glycosides from Colebrookea oppositifolia . Phytochemistry 1996; 42: 867-869
  • 3 Chopra RN, Nayar SL, Chopra IC. Glossary of Indian medicinal plants. New Delhi: Council of Scientific and Industrial Research;; 1956. 1. 74
  • 4 Thakur S, Sidhu MC. Phytochemical screening of some traditional medicinal plants. Res J Pharm Biol Chem Sci 2014; 5: 1088-1097
  • 5 Ahmed T, Kanwal R, Hassan M, Ayub N. Assessment of antibacterial activity of Colebrookia oppositifolia against waterborne pathogens isolated from drinking water of the Pothwar region in Pakistan. Hum Ecol Risk Assess 2009; 15: 401-415
  • 6 Shirsat R, Suradhar S, Koche D. Preliminary phytochemistry and antimicrobial activity of Salvia plebeia R. Br. and Colebrookea oppositifolia Smith. Int J Pure Appl Sci Technol 2014; 20: 21-24
  • 7 Subba B, Basnet P. Antimicrobial and antioxidant activity of some indigenous plants of Nepal. J Pharmacogn Phytochem 2014; 3: 62-67
  • 8 Gupta VK, Shukla C, Bisht GRS, Saikia D, Kumar S, Thakur RL. Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay. Lett Appl Microbiol 2011; 52: 33-40
  • 9 Gupta RS, Yadav RK, Dixit VP, Dobhal MP. Antifertility studies of Colebrookia oppositifolia leaf extract in male rats with special reference to testicular cell population dynamics. Fitoterapia 2001; 72: 236-245
  • 10 Ali I, Sharma P, Suri KA, Satti NK, Dutt P, Afrin F, Khan IA. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia . J Med Microbiol 2011; 60: 1326-1336
  • 11 Ansari S, Dobhal MP, Tyagi RP, Joshi BC, Barar FSK. Chemical investigation and pharmacological screening of the roots of Colebrookia oppositifolia Smith. Pharmazie 1982; 37: 70
  • 12 Patwardhan SA, Gupta AS. Two New flavones from Colebrookea oppositifolia . Indian J Chem 1981; 20?B: 627
  • 13 Mukherjee PK, Mukherjee K, Hermans-Lokkerbol ACJ, Verpoorte R, Suresh B. Flavonoid content of Eupatorium glandulosum and Coolebroke oppositifolia . J Nat Remedies 2001; 1: 21-24
  • 14 Reddy RVN, Reddy BAK, Gunasekaran D. A new acylated flavone glycoside from Colebrookea oppositifolia . J Asian Nat Prod Res 2009; 11: 183-186
  • 15 Verma SK, Parrek D, Singhal R, Chauhan AK, Parashar P, Dobal MP. Ferulic acid ester from Colebrookea oppositifolia . Indian J Chem 2012; 51?B: 1502-1503
  • 16 Dashti Y, Grkovic T, Quinn RJ. Predicting natural product value, an exploration of anti-TB drug space. Nat Prod Rep 2014; 31: 990-998
  • 17 World Health Organization. Global tuberculosis report 2014. Geneva: WHO Press; 2014: 1-171
  • 18 World Health Organization. Drug-resistant TB surveillance & response. Supplement – global tuberculosis report 2014. Geneva: WHO Press; 2014: 1-32
  • 19 Kulkarni RR, Shurpali K, Puranik VG, Sarkar D, Joshi SP. Antimycobacterial labdane diterpenes from Leucas stelligera . J Nat Prod 2013; 76: 1836-1841
  • 20 Kulkarni RR, Joshi SP. New 2, 2-diphenylpropane and ethoxylated aromatic monoterpenes from Lavandula gibsoni (Lamiaceae). Nat Prod Res 2013; 27: 1323-1329
  • 21 Chinchansure AA, Arkile M, Shukla A, Dhanasekaran S, Sarkar D, Joshi SP. Leucas mollissima, a source of bioactive compounds with antimalarial and antimycobacterium activities. Planta Med Lett 2015; 2: e35-e38
  • 22 Yang XW, Li SM, Feng L, Shen YH, Tian JM, Liu XH, Zeng HW, Zhang C, Zhang WD. Abiesanordines A–N: fourteen new norditerpenes from Abies georgei . Tetrahedron 2008; 64: 4354-4362
  • 23 Kinouchi Y, Ohtsu H, Tokuda H, Nishino H, Matsunaga S, Tanaka R. Potential antitumor-promoting diterpenoids from the stem bark of Picea glehni . J Nat Prod 2000; 63: 817-820
  • 24 Kulkarni RR, Shurpali K, Puranik VG, Sarkar D, Joshi SP. Antimycobacterial labdane diterpenes from Leucas stelligera . J Nat Prod 2013; 76: 1836-1841
  • 25 Torrenegra R, Pedrozo J, Robles J, Waibel R, Achenbach H. Diterpenes from Gnaphalium pellitum and Gnaphalium graveolens . Phytochemistry 1992; 31: 2415-2418
  • 26 Asakawa Y. Chemical constituents of Alnus sieboldiana (Betulaceae) II. The isolation and structure of flavonoids and stilbenes. Bull Chem Soc Jpn 1971; 44: 2761-2766
  • 27 Panichpol K, Waterman PG. Novel flavonoids from the stem of Popowia cauliflora . Phytochemistry 1978; 17: 1363-1367
  • 28 Su BN, Park EJ, Vigo JS, Graham JG, Cabieses F, Fong HHS, Pezzuto JM, Kinghorn AD. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry 2003; 63: 335-341
  • 29 Iinuma M, Matsuura S, Kusuda K. 13 C-Nuclear magnetic resonance (NMR) spectral studies on polysubstituted flavonoids. I. 13 C-NMR spectra of flavones. Chem Pharm Bull 1980; 28: 708-716
  • 30 Williams CA, Hoult JRS, Harborne JB, Greenham J, Eagles J. Biologically active lipophilic flavonol from Tanacetum parthenium . Phytochemistry 1995; 38: 267-270
  • 31 Sabina H, Aliya R. Bioactive assessment of selected marine red algae against Leishmania major and chemical constituents of Osmundea pinnatifida . Pak J Bot 2011; 43: 3053-3056
  • 32 Chen GY, Dai CY, Wang TS, Jiang CW, Han CR, Song XP. A new flavonol from the stem-bark of Premna fulva . Arkivoc 2010; 179-185
  • 33 Wei Y, Gao Y, Zhang K, Ito Y. Isolation of caffeic acid from Eupatorium adenophorum Spreng by high-speed counter current chromatography and synthesis of caffeic acid-intercalated layered double hydroxide. J Liq Chromatogr Relat Technol 2010; 33: 837-845
  • 34 Rao LJM, Kumari GNK, Rao NSP. Anisofolin-A, a new acylated flavone glucoside from Anisomeles ovata R. Br. Heterocycles 1982; 19: 1655-1661
  • 35 Švehlíková V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, Bao Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry 2004; 65: 2323-2332
  • 36 Yang M, Xu X, Xie C, Huang J, Xie Z, Yang D. Isolation and purification of forsythoside A and suspensaside A from Forsythia suspensa by high-speed counter-current chromatography. J Liq Chromatogr Relat Technol 2013; 36: 2895-2904
  • 37 Dzoyem JP, Guru SK, Pieme CA, Kuete V, Sharma A, Khan IA, Saxena AK, Vishwakarma RA. Cytotoxic and antimicrobial activity of selected Cameroonian edible plants. BMC Complement Altern Med 2013; 13: 78-84
  • 38 Singh U, Akhtar S, Mishra A, Sarkar D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J Microbiol Methods 2011; 84: 202-207
  • 39 Khan A, Sarkar D. A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active tubercle bacilli. J Microbiol Methods 2008; 73: 62-68