Klin Monbl Augenheilkd 2018; 235(08): 905-926
DOI: 10.1055/s-0042-123833
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Sonderformen choroidaler Neovaskularisationsmembranen

Choroidal Neovascularisation Other than Typical Neovascular Age-Related Macular Degeneration
D. Sandner
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Carl Gustav Carus, TU Dresden
› Author Affiliations
Further Information

Publication History

eingereicht 31 October 2016

akzeptiert 21 November 2016

Publication Date:
10 March 2017 (online)

Zusammenfassung

Choroidale Neovaskularisationsmembranen (CNV) im Rahmen einer neovaskulären altersassoziierten Makuladegeneration (nAMD) können in Typ-1- (okkulte) und Typ-2- (klassische) Membranen unterteilt werden. Hiervon abzugrenzen sind, wegen ihrer differierenden Morphologie und des teils schlechteren Ansprechens, neovaskuläre „Sonderformen“ wie retinale angiomatöse Proliferationen (RAP) oder die polypoidalen choroidalen Vaskulopathien (PCV). Klinisch hinweisend sind chorioretinale Anastomosen, kräftige Exsudationen mit – für die PCV – serosanguinösen Pigmentepithelabhebungen (PED) und typischen orangerotfarbenen Läsionen im papillomakulären Bündel. Die Indocyaningrünangiografie (ICGA) stellt den diagnostischen Goldstandard für die PCV dar und liefert wichtige Informationen auch bei den RAP. Die Polypen der PCV stellen sich hier frühzeitig als fokale Hyperfluoreszenz mit z. T. pulsierender Füllung dar, häufig in Verbindung mit einem anormalen choroidalen Netzwerk. Über Arealen mit einer PED können bei RAP retinoretinale Anastomosen gut identifiziert werden. Die Befunde der optischen Kohärenztomografie (OCT) ergänzen die Diagnostik. Ein möglichst frühzeitiger und konsequenter Therapieansatz mit intravitrealer Anti-VEGF-Gabe ist bei RAP für die Visusprognose entscheidend. PCV können eine spontane Regression zeigen. Besteht Therapiebedarf, sprechen die Polypen besser auf eine photodynamische Therapie (PDT) an. Bei assoziierter CNV ist die Kombination aus PDT und intravitrealer Anti-VEGF-Gabe sinnvoll. Trotz initialem Anstieg kann im Langzeitverlauf der Visus zumeist „nur“ stabilisiert werden. Bei idiopathischen wie sekundären CNV-Membranen (Myopia magna, postentzündlich, posttraumatisch oder im Rahmen hereditärer Bindegewebserkrankungen) handelt es sich zumeist um kleine (klassische) Typ-2-Membranen. Sie stellen streng genommen keine direkten Sonderformen dar. Durch ein meist jüngeres Patientenalter, eine kürzere Erkrankungsdauer, eine begrenzte Regenerationsfähigkeit des retinalen Pigmentepithels (RPE) können sie sich jedoch günstig von der nAMD unterscheiden, mit rascher Inaktivierung sowie einem insgesamt geringeren Anti-VEGF-Injektionsbedarf. Eine Sonderstellung innerhalb dieser Gruppe nimmt die CNV bei Angioid Streaks ein. Diese ist leider durch einen rezidivierenden, langwierigen und letztlich zumeist frustranen Verlauf gekennzeichnet.

Abstract

Choroidal neovascularisation (CNV) in the context of exsudative age-related macular degeneration (nAMD) can be divided into type 1 (occult) and type 2 (classical) membranes. Retinal angiomatous proliferation (RAP) or polypoidal choroidal vasculopathy (PCV) are “rare subtypes” of chorioretinal neovascularisation and are distinguished by their distinct morphology and the sometimes worse response to therapy. Chorioretinal anastomosis, severe exsudates with serosanguinous pigment epithelial detachment and, in PCV, orange-red lesions in the papillomacular bundle can be diagnostic. Indocyanine green angiography (ICGA) is considered the gold standard for diagnosis of PCV and delivers important information for RAP too. Typical characteristics of PCV include foci of hyperfluoresence, with pulsatile filling in the early phase. This characterises choroidal polypoidal lesions, often in connection with an abnormal choroidal vascular network. In RAP, typical retino-retinal anastomosis can be identified, in particular in areas with pigment epithelial detachment. Optical coherence tomography (OCT) can complement diagnostic testing. In cases of RAP, early therapy initiation with intravitreal anti-VEGF is crucial for the prognosis of visual acuity. PCV can exhibit spontaneous regression. In active disease, photodynamic therapy (PDT) is efficient in the closure of PCV polyps. In association with CNV, it makes sense to combine PDT and intravitreal anti-VEGF medication. In spite of the initial increase in visual acuity, this state is normally “only” stabilised in the long term. In patients with idiopathic secondary CNV membranes (high myopia, post-inflammatory, post-traumatic changes or in hereditary connective tissue diseases), small “classical” type 2 membranes are mostly involved. Hence, these are strictly speaking not directly rare subtypes. Nevertheless, these patients are mostly younger, with less protracted illness and limited available regeneration ability of the retinal pigment epithelium (RPE): they may therefore differ favourably from the courses with nAMD, with earlier inactivation and with fewer required anti-VEGF injections. CNV with angioid streaks are a special case in this group. Unfortunately, these lesions have a recurrent, protracted and, in the end, mostly frustrating course.

 
  • Literatur

  • 1 Friedman DS, OʼColmain BJ, Munoz B. et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004; 122: 564-572
  • 2 Finger R, Holz FG, Scholl H. et al. Prevalence and causes of registered blindness in the largest federal state of Germany. Br J Ophthalmol 2011; 95: 1061-1067
  • 3 Korb CA, Kottler UB, Wolfram C. et al. Prevalence of age-related macular degeneration in a large European cohort: results from the population-based Gutenberg Health Study. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1403-1411
  • 4 Freund KB, Yannuzzi LA, Sorenson JA. Age-related macular degeneration and choroidal neovascularization. Am J Ophthalmol 1993; 115: 786-791
  • 5 Bermig J, Tylla H, Jochmann C. et al. Angiographic findings in patients with exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2002; 240: 169-175
  • 6 Ying GS, Huang J, Maguire MG. et al. Baseline predictors for one-year visual outcomes with ranibizumab or bevacizumab for neovascular age-related macular degeneration. Ophthalmology 2013; 120: 122-129
  • 7 Amoaku WM, Chakravarthy U, Gale R. et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye (Lond) 2015; 29: 721-731
  • 8 Freund KB, Ho I, Barbazetb I. et al. Type 3 neovascularization: The expanded spectrum of retinal angiomatous proliferation. Retina 2008; 28: 201-211
  • 9 Cohen SY, Laroche A, Leguen Y. et al. Etiology of choroidal neovascularization in young patients. Ophthalmology 1996; 103: 1241-1244
  • 10 Ohno-Matsui K, Ikuno Y, Yasuda M, Murata T, Sakamoto T, Ishibashi T. Myopic Macular Degeneration. In: Ryan SJ, Schachat AP, Sadda SR. eds. Retina. 5th ed. Vol. II. Philadelphia: Elsevier; 2013: 1256-1266
  • 11 Wong TY, Ferreira A, Hughes R. et al. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol 2014; 157: 9-25
  • 12 Ohno-Matsui K, Yoshida T, Futagami S. et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol 2003; 87: 570-573
  • 13 Steidl SM, Pruett RC. Macular complications associated with posterior staphyloma. Am J Ophthalmol 1997; 123: 181-187
  • 14 Hotchkiss ML, Fine SL. Pathologic myopia and choroidal neovascularization. Am J Ophthalmol 1981; 91: 177-183
  • 15 Lam LA. Angioid Streaks. In: Ryan SJ, Schachat AP, Sadda SR. Retina. 5th ed. Vol. II. Philadelphia: Elsevier; 2013: 1267-1273
  • 16 Baxter SL, Pistilli M, Pujari SS. et al. Risk of choroidal neovascularization among the uveitides. Am J Ophthalmol 2013; 156: 468-477
  • 17 Spaide RF. Choroidal neovascularization in younger patients. Curr Opin Ophthalmol 1999; 10: 177-181
  • 18 Wolf S, Balcuiniene VJ, Laganovska G. et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology 2014; 121: 682-692
  • 19 Ikuno Y, Ohno-Matsui K, Wong TY. et al. Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR Study. Ophthalmology 2015; 122: 1220-1227
  • 20 Deutsche Ophthalmologische Gesellschaft. Stellungnahme der Deutschen Ophthalmologischen Gesellschaft, der Retinologischen Gesellschaft und des Berufsverbandes der Augenärzte Deutschlands zur Therapie der choroidalen Neovaskularisation bei Myopie. Stand: Dezember 2013. Im Internet: http://www.dog.org/?cat=199 Stand: 12.01.2017
  • 21 Wang E, Chen Y. Intravitreal anti-vascular endothelial growth factor for choroidal neovascularization secondary to pathologic myopia: systematic review and meta-analysis. Retina 2013; 33: 1375-1392
  • 22 Uemura A, Thomas MA. Subretinal surgery for choroidal neovascularization in patients with high myopia. Arch Ophthalmol 2000; 118: 344-350
  • 23 Ruiz-Moreno JM, de la Vega C. Surgical removal of subfoveal choroidal neovascularisation in highly myopic patients. Br J Ophthalmol 2001; 85: 1041-1043
  • 24 Jalkh AE, Weiter JJ, Trempe CL. et al. Choroidal neovascularization in degenerative myopia: role of laser photocoagulation. Ophthalmic Surg 1987; 18: 721-725
  • 25 Secretan M, Kuhn D, Soubrane G. et al. Long-term visual outcome of choroidal neovascularization in pathologic myopia: natural history and laser treatment. Eur J Ophthalmol 1997; 7: 307-316
  • 26 Heier JS, Brown D, Ciulla T. et al. Ranibizumab for choroidal neovascularization secondary to causes other than age related macular degeneration: a phase I clinical trial. Ophthalmology 2011; 118: 111-118
  • 27 Lai TY, Desset-Brethes S, Liew S. et al. Efficacy and safety of ranibizumab 0.5 mg (RBZ) in patients with visual impairment due to choroidal neovascularization (CNV) associated with rare diseases: 6-month results from MINERVA. Abstract presented at ARVO 2016; Program Number: 1349.
  • 28 Walia HS, Shah GK, Blinder KJ. Treatment of CNV secondary to presumed ocular histoplasmosis with intravitreal aflibercept 2.0 mg injection. Can J Ophthalmol 2016; 51: 91-96
  • 29 Vaz-Pereira S, Collaço L, De Salvo G. et al. Intravitreal aflibercept for choroidal neovascularisation in angioid streaks. Eye (Lond) 2015; 29: 1236-1238
  • 30 Broadhead GK, Chang A. Intravitreal aflibercept for choroidal neovascularisation complicating chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253: 979-981
  • 31 Arevalo JF, Adan A, Berrocal MH. et al. Intravitreal bevacizumab for inflammatory choroidal neovascularization: results from the Pan-American Collaborative Retina Study Group at 24 months. Retina 2011; 31: 353-363
  • 32 Cionni DA, Lewis SA, Petersen MR. et al. Analysis of outcomes for intravitreal bevacizumab in the treatment of choroidal neovascularization secondary to ocular histoplasmosis. Ophthalmology 2012; 119: 327-332
  • 33 Parodi MP, Iacono P, La Spina C. et al. Intravitreal bevacizumab for non-subfoveal choroidal neovascularization associated with angioid streaks. Am J Ophthalmol 2014; 157: 374-377
  • 34 Mandal S, Garg S, Venkatesh P. et al. Intravitreal bevacizumab for subfoveal idiopathic choroidal neovascularization. Arch Ophthalmol 2007; 125: 1487-1492
  • 35 Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy: five-year results from randomized clinical trials. Arch Ophthalmol 1991; 109: 1109-1114
  • 36 Macular Photocoagulation Study Group. Krypton laser photocoagulation for idiopathic neovascular lesions: results of a randomized clinical trial. Arch Ophthalmol 1990; 108: 832-837
  • 37 Lafaut BA, Aisenbrey S, Vanden Broecke C. et al. Clinicopathological correlation of deep retinal vascular anomalous complex in age related macular degeneration. Br J Ophthalmol 2000; 84: 1269-1274
  • 38 Hartnett ME, Weiter JJ, Staurenghi G. et al. Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 1996; 103: 2042-2053
  • 39 Slakter JS, Yannuzzi LA, Schneider U. et al. Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration. Ophthalmology 2000; 107: 742-753
  • 40 Scott AW, Bressler SB. Retinal angiomatous proliferation or retinal anastomosis to the lesion. Eye (Lond) 2010; 24: 491-496
  • 41 Gass JDM, Agarwal A, Lavina AM. et al. Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 2003; 23: 741-751
  • 42 Hartnett ME, Weiter JJ, Garsd A. et al. Classification of retinal pigment epithelial detachments associated with drusen. Graefes Arch Clin Exp Ophthalmol 1992; 230: 11-19
  • 43 Yannuzzi LA, Negrão S, Iida T. et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001; 21: 416-434
  • 44 Monson DM, Smith JR, Klein ML. et al. Clinicopathologic correlation of retinal angiomatous proliferation. Arch Ophthalmol 2008; 126: 1664-1668
  • 45 Yannuzzi LA, Freund KB, Takahashi BS. Review of retinal angiomatous proliferation or type 3 neovascularization. Retina 2008; 28: 375-384
  • 46 Yannuzzi LA. The Retina Atlas. Elsevier Health Sciences; 2010: 592
  • 47 Costa RA, Calucci D, Paccola L. et al. Occult chorioretinal anastomosis in age-related macular degeneration: a prospective study by optical coherence tomography. Am J Ophthalmol 2005; 140: 107-116
  • 48 Fang PP, Harmening WM, Müller PL. et al. Technical principles of OCT angiography. Ophthalmologe 2016; 113: 6-13
  • 49 Dansingani KK, Naysan J, Freund KB. En face OCT angiography demonstrates flow in early type 3 neovascularization (retinal angiomatous proliferation). Eye (Lond) 2015; 29: 703-706
  • 50 Kuehlewein L, Dansingani KK, de Carlo TE. et al. Optical coherence tomography angiography in early type 3 neovascularization secondary to age-related macular degeneration. Retina 2015; 35: 2229-2235
  • 51 Daniel E, Shaffer J, Ying GS. et al. Outcomes in Eyes with Retinal Angiomatous Proliferation in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). Ophthalmology 2016; 123: 609-616
  • 52 Jung JJ, Chen CY, Mrejen S. et al. The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration. Am J Ophthalmol 2014; 158: 769-779
  • 53 Kuhn D, Meunier I, Soubrane G. et al. Imaging of chorioretinal anastomoses in vascularized retinal pigment epithelium detachments. Arch Ophthalmol 1995; 113: 1392-1398
  • 54 Axer-Siegel R, Bourla D, Priel E. et al. Angiographic and flow patterns of retinal choroidal anastomoses in age-related macular degeneration with occult choroidal neovascularization. Ophthalmology 2002; 109: 1726-1736
  • 55 Maruko I, Iida T, Saito M. et al. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 2007; 144: 15-22
  • 56 Gross NE, Aizman A, Brucker A. et al. Nature and risk of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation. Retina 2005; 25: 713-718
  • 57 Wong TY, Chakravarthy U, Klein R. et al. The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology 2008; 115: 116-126
  • 58 Macular Photocoagulation Study Group. Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration. Arch Ophthalmol 1997; 115: 741-747
  • 59 Macular Photocoagulation Study Group. Five-year follow-up of fellow eyes of patients with age-related macular degeneration and unilateral extrafoveal choroidal neovascularization. Arch Ophthalmol 1993; 111: 1189-1199
  • 60 Campa C, Harding SP, Pearce IA. et al. Incidence of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation. Eye (Lond) 2010; 24: 1585-1589
  • 61 Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol 2011; 151: 745-751
  • 62 Fernandes LH, Freund KB, Yannuzzi LA. et al. The nature of focal areas of hyperfluorescence or hot spots imaged with indocyanine green angiography. Retina 2002; 22: 557-568
  • 63 Rouvas AA, Papakostas TD, Ntouraki A. et al. Angiographic and OCT features of retinal angiomatous proliferation. Eye (Lond) 2010; 24: 1633-1642
  • 64 Truong SN, Alam S, Zawadzki RJ. et al. High resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation. Retina 2007; 27: 915-925
  • 65 Matsumoto H, Sato T, Kishi S. Tomographic features of intraretinal neovascularization in retinal angiomatous proliferation. Retina 2010; 30: 425-430
  • 66 Amarakoon S, de Jong JH, Braaf B. et al. Phase-resolved Doppler optical coherence tomographic features in retinal angiomatous proliferation. Am J Ophthalmol 2015; 160: 1044-1054
  • 67 Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina 2015; 35: 2163-2180
  • 68 Johnson TM, Glaser BM. Focal laser ablation of retinal angiomatous proliferation. Retina 2006; 26: 765-772
  • 69 Boscia F, Furino C, Sborgia L. et al. Photodynamic therapy for retinal angiomatous proliferations and pigment epithelium detachment. Am J Ophthalmol 2004; 138: 1077-1079
  • 70 Panagiotidis D, Karagiannis DA, Baltatzis S. Photodynamic therapy in retinal angiomatous proliferation stage I. Eur J Ophthalmol 2006; 16: 326-329
  • 71 Silva RM, Cachulo ML, Figueira J. et al. Chorioretinal anastomosis and photodynamic therapy: a two-year follow-up study. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1131-1139
  • 72 Boscia F, Furino C, Prascina F. et al. Combined surgical ablation and intravitreal triamcinolone acetonide for retinal angiomatous proliferation. Eur J Ophthalmol 2005; 15: 513-516
  • 73 Borrillo JL, Sivalingam A, Martidis A. et al. Surgical ablation of retinal angiomatous proliferation. Arch Ophthalmol 2003; 121: 558-561
  • 74 Sakimoto S, Gomi F, Sakaguchi H. et al. Recurrent retinal angiomatous proliferation after surgical ablation. Am J Ophthalmol 2005; 139: 917-918
  • 75 Shiragami C, Iida T, Nagayama D. et al. Recurrence after surgical ablation for retinal angiomatous proliferation. Retina 2007; 27: 198-203
  • 76 Kuroiwa S, Arai J, Gaun S. et al. Rapidly progressive scar formation after transpupillary thermotherapy in retinal angiomatous proliferation. Retina 2003; 23: 417-420
  • 77 Nakata M, Yuzawa M, Kawamura A. et al. Combining surgical ablation of retinal inflow and outflow vessels with photodynamic therapy for retinal angiomatous proliferation. Am J Ophthalmol 2006; 141: 968-970
  • 78 Gupta B, Jyothi S, Sivaprasad S. Current treatment options for retinal angiomatous proliferans (RAP). Br J Ophthalmol 2010; 94: 672-677
  • 79 Maaß J, Sandner D, Matthé E. [Intravitreal ranibizumab for the treatment of retinal angiomatous proliferation]. Ophthalmologe 2016; DOI: 10.1007/s00347-016-0378-6. [Epub ahead of print]
  • 80 Parodi MB, Iacono P, Menchini F. et al. Intravitreal bevacizumab versus ranibizumab for the treatment of retinal angiomatous proliferation. Acta Ophthalmol 2013; 91: 267-273
  • 81 Park YG, Roh YJ. One year results of intravitreal ranibizumab monotherapy for retinal angiomatous proliferation: a comparative analysis based on disease stages. BMC Ophthalmol 2015; 15: 182
  • 82 Tsaousis KT, Konidaris VE, Banerjee S. et al. Intravitreal aflibercept treatment of retinal angiomatous proliferation: a pilot study and short-term efficacy. Graefes Arch Clin Exp Ophthalmol 2015; 253: 663-665
  • 83 Matsumoto H, Sato T, Morimoto M. et al. Treat-and-extend regime with aflibercept for retinal angiomatuos proliferation. Retina 2016; DOI: 10.1097/IAE.0000000000001104. [Epub ahead of print]
  • 84 Cho HJ, Yoo SG, Kim HS. et al. Risk factors for geographic atrophy after intravitreal ranibizumab injections for retinal angiomatous proliferation. Am J Ophthalmol 2015; 159: 285-292
  • 85 Baek J, Lee JH, Kim JY. et al. Geographic atrophy and activity of neovascularization in retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 2016; 57: 1500-1505
  • 86 Kleiner RC, Brucker AJ, Johnston RL. The posterior uveal bleeding syndrome. Retina 1990; 10: 9-17
  • 87 Stern RM, Zakov ZN, Zegarra H. et al. Multiple recurrent serosanguineous retinal pigment epithelial detachments in black women. Am J Ophthalmol 1985; 100: 560-569
  • 88 Perkovich BT, Zakov ZN, Berlin LA. et al. An update on multiple recurrent serosanguineous retinal pigment epithelial detachments in black women. Retina 1990; 10: 18-26
  • 89 MacCumber MW, Dastgheib K, Bressler NM. et al. Clinicopathologic correlation of the multiple recurrent serosanguineous retinal pigment epithelial detachments syndrome. Retina 1994; 14: 143-152
  • 90 Lim LS, Cheung CM, Wong TY. Asian age-related macular degeneration: Current concepts and gaps in knowledge. Asia Pac J Ophthalmol (Phila) 2013; 2: 32-41
  • 91 Ciardella AP, Donsoff IM, Huang SJ. et al. Polypoidal choroidal vasculopathy. Surv Ophthalmol 2004; 49: 25-37
  • 92 Laude A, Cackett PD, Vithana EN. et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease?. Prog Retin Eye Res 2010; 29: 19-29
  • 93 Wen F, Chen C, Wu D. et al. Polypoidal choroidal vasculopathy in elderly Chinese patients. Graefes Arch Clin Exp Ophthalmol 2004; 242: 625-629
  • 94 Mori K, Horie-Inoue K, Gehlbach PL. et al. Phenotype and genotype characteristics of age-related macular degeneration in a Japanese population. Ophthalmology 2010; 117: 928-938
  • 95 Cheung CM, Li X, Mathur R. et al. A prospective study of treatment patterns and 1-year outcome of asian age-related macular degeneration and polypoidal choroidal vasculopathy. PLoS One 2014; 9: e101057
  • 96 Maruko I, Iida T, Saito M. et al. Clinical characteristics of exudative age-related macular degeneration in japanese patients. Am J Ophthalmol 2007; 144: 15-22
  • 97 Li Y, You QS, Wei WB. et al. Polypoidal choroidal vasculopathy in adult Chinese: The Beijing Eye Study. Ophthalmology 2014; 121: 2290-2291
  • 98 Liu Y, Wen F, Huang S. et al. Subtype lesions of neovascular age-related macular degeneration in Chinese patients. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1441-1445
  • 99 Sho K, Takahashi K, Yamada H. et al. Polypoidal choroidal vasculopathy: Incidence, demographic features, and clinical characteristics. Arch Ophthalmol 2003; 121: 1392-1396
  • 100 Sakurada Y, Yoneyama S, Imasawa M. et al. Systemic risk factors associated with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Retina 2013; 33: 841-845
  • 101 Kubisz P, Chudy P, Stasko J. et al. Circulating vascular endothelial growth factor in the normo- and/or microalbuminuric patients with type 2 diabetes mellitus. Acta Diabetol 2010; 47: 119-124
  • 102 Tong JP, Chan WM, Liu DT. et al. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Am J Ophthalmol 2006; 141: 456-462
  • 103 Chen H, Liu K, Chen LJ. et al. Genetic associations in polypoidal choroidal vasculopathy: a systematic review and meta-analysis. Mol Vis 2012; 18: 816-829
  • 104 Yannuzzi LA, Sorenson J, Spaide RF. et al. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina 1990; 10: 1-8
  • 105 Yannuzzi LA, Wong DW, Sforzolini BS. et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol 1999; 117: 1503-1510
  • 106 Koh A, Lee WK, Chen LJ. et al. Everest study: Efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 2012; 32: 1453-1464
  • 107 Cackett P, Wong D, Yeo I. A classification system for polypoidal choroidal vasculopathy. Retina 2009; 29: 187-191
  • 108 Coscas G, Yamashiro K, Coscas F. et al. Comparison of exudative age-related macular degeneration subtypes in Japanese and French patients: Multicenter diagnosis with multimodal imaging. Am J Ophthalmol 2014; 158: 309-318
  • 109 Tsujikawa A, Ojima Y, Yamashiro K. et al. Association of lesion size and visual prognosis to polypoidal choroidal vasculopathy. Am J Ophthalmol 2011; 151: 961-972
  • 110 Tan CS, Ngo WK, Lim LW. et al. A novel classification of the vascular patterns of polypoidal choroidal vasculopathy and its relation to clinical outcomes. Br J Ophthalmol 2014; 98: 1528-1533
  • 111 Lee WK, Kim KS, Kim W. et al. Responses to photodynamic therapy in patients with polypoidal choroidal vasculopathy consisting of polyps resembling grape clusters. Am J Ophthalmol 2012; 154: 355-365
  • 112 Byeon SH, Lew YJ, Lee SC. et al. Clinical features and follow-up results of pulsating polypoidal choroidal vasculopathy treated with photodynamic therapy. Acta Ophthalmol 2010; 88: 660-668
  • 113 Tsujikawa A, Sasahara M, Otani A. et al. Pigment epithelial detachment in polypoidal choroidal vasculopathy. Am J Ophthalmol 2007; 143: 102-111
  • 114 Kim JH, Kang SW, Kim TH. et al. Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions. Am J Ophthalmol 2013; 156: 974-980
  • 115 Mrejen S, Sarraf D, Mukkamala SK. et al. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina 2013; 33: 1735-1762
  • 116 Inoue M, Balaratnasingam Ch, Freund KB. et al. Optical coherence tomography angiography of polypoidal choroidal vasculopathy and polypoidal choroidal neovascularization. Retina 2015; 35: 2265-2274
  • 117 Uyama M, Wada M, Nagai Y. et al. Polypoidal choroidal vasculopathy: Natural history. Am J Ophthalmol 2002; 133: 639-648
  • 118 Cheung CM, Yang E, Lee WK. et al. The natural history of polypoidal choroidal vasculopathy: a multi-center series of untreated Asian patients. Graefes Arch Clin Exp Ophthalmol 2015; 253: 2075-2085
  • 119 Yannuzzi LA. The Retina Atlas. Elsevier Health Sciences; 2010: 585
  • 120 Oishi A, Kojima H, Mandai M. et al. Comparison of the effect of ranibizumab and verteporfin for polypoidal choroidal vasculopathy: 12-month LAPTOP study results. Am J Ophthalmol 2013; 156: 644-651
  • 121 Wong CW, Cheung CM, Mathur R. et al. Three-year results of polypoidal choroidal vasculopathy treated with photodynamic therapy. Retrospective study and systematic review. Retina 2015; 35: 1577-1593
  • 122 Yamashita A, Shiraga F, Shiragami C. et al. Two-year results of reduced-fluence photodynamic therapy for polypoidal choroidal vasculopathy. Am J Ophthalmol 2013; 155: 96-102
  • 123 Yamashita A, Shiraga F, Shiragami C. et al. One-year results of reduced-fluence photodynamic therapy for polypoidal choroidal vasculopathy. Am J Ophthalmol 2010; 149: 465-471
  • 124 Yoshida Y, Kohno T, Yamamoto M. et al. Two-year results of reduced-fluence photodynamic therapy combined with intravitreal ranibizumab for typical age-related macular degeneration and polypoidal choroidal vasculopathy. Jpn J Ophthalmol 2013; 57: 283-293
  • 125 Sakurai M, Baba T, Kitahashi M. et al. One-year results of intravitreal ranibizumab combined with reduced-fluence photodynamic therapy for polypoidal choroidal vasculopathy. Clin Ophthalmol 2014; 8: 235-241
  • 126 Kokame GT, Yeung L, Lai JC. Continuous anti-VEGF treatment with ranibizumab for polypoidal choroidal vasculopathy: 6-month results. Br J Ophthalmol 2010; 94: 297-301
  • 127 Cho HJ, Baek JS, Lee DW. et al. Short-term effectiveness of intravitreal bevacizumab vs. ranibizumab injections for patients with polypoidal choroidal vasculopathy. Korean J Ophthalmol 2012; 26: 157-162
  • 128 Hikichi T, Higuchi M, Matsushita T. et al. One-year results of three monthly ranibizumab injections and as-needed reinjections for polypoidal choroidal vasculopathy in Japanese patients. Am J Ophthalmol 2012; 154: 117-124
  • 129 Hikichi T, Higuchi M, Matsushita T. et al. Factors predictive of outcomes 1 year after 3 monthly ranibizumab injections and as-needed reinjections for polypoidal choroidal vasculopathy in Japanese patients. Retina 2013; 33: 1949-1958
  • 130 Kang HM, Koh HJ. Long-term visual outcome and prognostic factors after intravitreal ranibizumab injections for polypoidal choroidal vasculopathy. Am J Ophthalmol 2013; 156: 652-660
  • 131 Ijiri S, Sugiyama K. Short-term efficacy of intravitreal aflibercept for patients with treatment-naive polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253: 351-357
  • 132 Oishi A, Tsujikawa A, Yamashiro K. et al. One year result of aflibercept treatment on age-related macular degeneration and predictive factors for visual outcome. Am J Ophthalmol 2015; 159: 853-860
  • 133 Kokame GT, Lai JC, Wee R. et al. Prospective clinical trial of intravitreal aflibercept treatment for polypoidal choroidal vasculopathy with hemorrhage or exudation (EPIC study): 6 month results. BMC Ophthalmol 2016; 16: 127
  • 134 Cheung CM, Mohla A, Wong TY. Resolution of persistent pigment epithelial detachment secondary to polypoidal choroidal vasculopathy in response to aflibercept. Eye (Lond) 2014; 28: 1148-1149
  • 135 Saito M, Kano M, Itagaki K. et al. Switching to intravitreal aflibercept injection for polypoidal choroidal vasculopathy refractory to ranibizumab. Retina 2014; 34: 2192-2201
  • 136 Yuzawa M, Mori R, Haruyama M. A study of laser photocoagulation for polypoidal choroidal vasculopathy. Jpn J Ophthalmol 2003; 47: 379-384
  • 137 Cheung CMG, Yeo I, Li X. et al. Argon laser with and without anti-vascular endothelial growth factor therapy for extrafoveal polypoidal choroidal vasculopathy. Am J Ophthalmol 2013; 155: 295-304
  • 138 Introini U, Casalino G, Triolo G. et al. Stereotactic radiotherapy for polypoidal choroidal vasculopathy: a pilot study. Ophthalmologica 2015; 232: 82-88