Synlett 2023; 34(02): 93-100
DOI: 10.1055/s-0042-1751390
synpacts

Aminium-Radical-Mediated Intermolecular Hydroamination of Nonactivated Olefins

Si-Ming Jia
,
Yi-Hang Huang
,
Fei Wang
We are grateful to the financial support from the National Natural Science Foundation of China (Grants 22101140, 22188101), the Fundamental Research Funds for the Central Universities (Grant 63223009), and Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter at Nankai University (Grant 63181206).


Dedicated to Professor Qi-Lin Zhou on the occasion of his 65th birthday.

Abstract

Aminium radicals are attractive intermediates in synthetic chemistry that readily participate in a series of C–N bond-forming processes. Here, we briefly discuss strategies for generating aminium radicals from various precursors in the context of intermolecular alkene amination, and we highlight recent advances in aminium-radical-mediated hydroaminations of nonactivated olefins to directly approach alkylamines.

1 Introduction

2 Intermolecular Hydroamination of Nonactivated Alkenes with Alkylamines under Photoredox Catalysis

3 Intermolecular Hydroamination of Nonactivated Alkenes with Aliphatic Azides

4 Conclusions



Publication History

Received: 05 October 2022

Accepted after revision: 27 October 2022

Article published online:
23 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 3a Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 3b Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem. Rev. 2015; 115: 2596
    • 4a Kemper J, Studer A. Angew. Chem. Int. Ed. 2005; 44: 4914
    • 4b Guin J, Mück-Lichtenfeld C, Grimme S, Studer A. J. Am. Chem. Soc. 2007; 129: 4498
    • 4c Zhu Q, Graff DE, Knowles RR. J. Am. Chem. Soc. 2018; 140: 741
    • 4d Lardy SW, Schmidt VA. J. Am. Chem. Soc. 2018; 140: 12318
    • 4e Jiang H, Studer A. Chem. Eur. J. 2019; 25: 7105
    • 4f Wang J.-J, Yu W. Chem. Eur. J. 2019; 25: 3510
    • 4g Li H, Shen S.-J, Zhu C.-L, Xu H. J. Am. Chem. Soc. 2019; 141: 9415
    • 4h Li X, Chen P, Liu G. Sci. China: Chem. 2019; 62: 1537
    • 4i Park S, Jeong J, Fujita K.-i, Yamamoto A, Yoshida H. J. Am. Chem. Soc. 2020; 142: 12708
    • 4j Zhao G, Li J, Wang T. Eur. J. Org. Chem. 2021; 2650
    • 4k Chinn AJ, Sedillo K, Doyle AG. J. Am. Chem. Soc. 2021; 143: 18331
    • 4l Ji Y.-X, Li J, Li C.-M, Qu S, Zhang B. Org. Lett. 2021; 23: 207
    • 5a Horner JH, Martinez FN, Musa OM, Newcomb M, Shahin HE. J. Am. Chem. Soc. 1995; 117: 11124
    • 5b Wagner BD, Ruel G, Lusztyk J. J. Am. Chem. Soc. 1996; 118: 13
    • 5c Musa OM, Horner JH, Shahin H, Newcomb M. J. Am. Chem. Soc. 1996; 118: 3862
    • 6a Wolff ME. Chem. Rev. 1963; 63: 55
    • 6b Chow YL. Acc. Chem. Res. 1973; 6: 354
    • 6c Chow YL, Danen WC, Nelsen SF, Rosenblatt DH. Chem. Rev. 1978; 78: 243
    • 6d Stella L. Angew. Chem. Int. Ed. 1983; 22: 337
    • 6e Esker JL, Newcomb M. Adv. Heterocycl. Chem. 1993; 58: 1
  • 7 Newcomb M, Kumar MU. Tetrahedron Lett. 1990; 31: 1675
    • 8a Hu J, Wang J, Nguyen TH, Zheng N. Beilstein J. Org. Chem. 2013; 9: 1977
    • 8b Davies J, Morcillo SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
    • 8c Ganley JM, Murray PR. D, Knowles RR. ACS Catal. 2020; 10: 11712
    • 9a Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
    • 9b Morris SA, Wang J, Zheng N. Acc. Chem. Res. 2016; 49: 1957
    • 9c Svejstrup TD, Ruffoni A, Juliá F, Aubert VM, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 14948
    • 9d Legnani L, Prina-Cerai G, Delcaillau T, Willems S, Morandi B. Science 2018; 362: 434
    • 9e Capilato JN, Bume DD, Lee WH, Hoffenberg LE. S, Jokhai RT, Lectka T. J. Org. Chem. 2018; 83: 14234
    • 9f Govaerts S, Angelini L, Hampton C, Malet-Sanz L, Ruffoni A, Leonori D. Angew. Chem. Int. Ed. 2020; 59: 15021
    • 9g Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Angew. Chem. Int. Ed. 2020; 59: 21064
    • 9h Makai S, Falk E, Morandi B. J. Am. Chem. Soc. 2020; 142: 21548
    • 9i Cheng Q, Chen J, Lin S, Ritter T. J. Am. Chem. Soc. 2020; 142: 17287
    • 9j Cheng Q, Bai Z, Tewari S, Ritter T. Nat. Chem. 2022; 14: 898
  • 10 Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR. Science 2017; 355: 727
  • 11 Miller DC, Ganley JM, Musacchio AJ, Sherwood TC, Ewing WR, Knowles RR. J. Am. Chem. Soc. 2019; 141: 16590
  • 12 Qin Y, Zhu Q, Sun R, Ganley JM, Knowles RR, Nocera DG. J. Am. Chem. Soc. 2021; 143: 10232
  • 13 Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 14a Sivaguru P, Ning Y, Bi X. Chem. Rev. 2021; 121: 4253
    • 14b Ge L, Chiou M.-F, Li Y, Bao H. Green Synth. Catal. 2020; 1: 86
  • 15 Minozzi M, Nanni D, Spagnolo P. Chem. Eur. J. 2009; 15: 7830
    • 16a Benati L, Bencivenni G, Leardini R, Minozzi M, Nanni D, Scialpi R, Spagnolo P, Zanardi G. J. Org. Chem. 2006; 71: 5822
    • 16b Postigo A, Kopsov S, Ferreri C, Chatgilialoglu C. Org. Lett. 2007; 9: 5159
    • 16c Goh YL, Tam EK. W, Bernardo PH, Cheong CB, Johannes CW, William AD, Adsool VA. Org. Lett. 2014; 16: 1884
  • 17 Jia S.-M, Huang Y.-H, Wang Z.-L, Fan F.-X, Fan B.-H, Sun H.-X, Wang H, Wang F. J. Am. Chem. Soc. 2022; 144: 16316