Journal of Pediatric Epilepsy 2023; 12(01): 009-020
DOI: 10.1055/s-0042-1760104
Review Article

The Noninvasive Evaluation for Minimally Invasive Pediatric Epilepsy Surgery (MIPES): A Multimodal Exploration of the Localization-Based Hypothesis

Deepankar Mohanty
1   Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
,
Michael Quach
1   Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
› Author Affiliations

Abstract

Minimally invasive pediatric epilepsy surgery (MIPES) is a rising technique in the management of focal-onset drug-refractory epilepsy. Minimally invasive surgical techniques are based on small, focal interventions (such as parenchymal ablation or localized neuromodulation) leading to elimination of the seizure onset zone or interruption of the larger epileptic network. Precise localization of the seizure onset zone, demarcation of eloquent cortex, and mapping of the network leading to seizure propagation are required to achieve optimal outcomes. The toolbox for presurgical, noninvasive evaluation of focal epilepsy continues to expand rapidly, with a variety of options based on advanced imaging and electrophysiology. In this article, we will examine several of these diagnostic modalities from the standpoint of MIPES and discuss how each can contribute to the development of a localization-based hypothesis for potential surgical targets.



Publication History

Received: 15 November 2022

Accepted: 15 November 2022

Article published online:
22 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain 2001; 124 (Pt 9): 1683-1700
  • 2 Jayakar P, Gaillard WD, Tripathi M, Libenson MH, Mathern GW, Cross JH. Task Force for Paediatric Epilepsy Surgery, Commission for Paediatrics, and the Diagnostic Commission of the International League Against Epilepsy. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia 2014; 55 (04) 507-518
  • 3 Sun PY, Wyatt K, Nickels KC, Wong-Kisiel LC, Mandrekar J, Wirrell E. Predictors of length of stay in children admitted for presurgical evaluation for epilepsy surgery. Pediatr Neurol 2015; 53 (03) 207-210
  • 4 Mann C, Willems LM, Leyer AC. et al. Benefits, safety and outcomes of long-term video EEG monitoring in pediatric patients. Eur J Paediatr Neurol 2021; 32: 29-35
  • 5 Asano E, Pawlak C, Shah A. et al. The diagnostic value of initial video-EEG monitoring in children–review of 1000 cases. Epilepsy Res 2005; 66 (1–3): 129-135
  • 6 Lagarde S, Bartolomei F. Focal epilepsies and focal disorders. Handb Clin Neurol 2019; 161: 17-43
  • 7 Andrade-Valenca LP, Dubeau F, Mari F, Zelmann R, Gotman J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology 2011; 77 (06) 524-531
  • 8 Melani F, Zelmann R, Dubeau F, Gotman J. Occurrence of scalp-fast oscillations among patients with different spiking rate and their role as epileptogenicity marker. Epilepsy Res 2013; 106 (03) 345-356
  • 9 Zelmann R, Lina JM, Schulze-Bonhage A, Gotman J, Jacobs J. Scalp EEG is not a blur: it can see high frequency oscillations although their generators are small. Brain Topogr 2014; 27 (05) 683-704
  • 10 Cuello-Oderiz C, von Ellenrieder N, Dubeau F, Gotman J. Influence of the location and type of epileptogenic lesion on scalp interictal epileptiform discharges and high-frequency oscillations. Epilepsia 2017; 58 (12) 2153-2163
  • 11 Zijlmans M, Worrell GA, Dümpelmann M. et al. How to record high-frequency oscillations in epilepsy: a practical guideline. Epilepsia 2017; 58 (08) 1305-1315
  • 12 Liu S, Gurses C, Sha Z. et al. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy. Brain 2018; 141 (03) 713-730
  • 13 Dirodi M, Tamilia E, Grant PE. et al. Noninvasive localization of high-frequency oscillations in children with epilepsy: validation against intracranial gold-standard. Annu Int Conf IEEE Eng Med Biol Soc 2019; 2019: 1555-1558
  • 14 Tamilia E, Dirodi M, Alhilani M. et al. Scalp ripples as prognostic biomarkers of epileptogenicity in pediatric surgery. Ann Clin Transl Neurol 2020; 7 (03) 329-342
  • 15 Mooij AH, Raijmann RCMA, Jansen FE, Braun KPJ, Zijlmans M. Physiological ripples (± 100 Hz) in spike-free scalp EEGs of children with and without epilepsy. Brain Topogr 2017; 30 (06) 739-746
  • 16 Foldvary-Schaefer N, Unnwongse K. Localizing and lateralizing features of auras and seizures. Epilepsy Behav 2011; 20 (02) 160-166
  • 17 Tufenkjian K, Lüders HO. Seizure semiology: its value and limitations in localizing the epileptogenic zone. J Clin Neurol 2012; 8 (04) 243-250
  • 18 Rose S, Ebersole JS. Advances in spike localization with EEG dipole modeling. Clin EEG Neurosci 2009; 40 (04) 281-287
  • 19 Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002; 24 (Suppl D): 5-12
  • 20 Russo A, Jayakar P, Lallas M. et al. The diagnostic utility of 3D electroencephalography source imaging in pediatric epilepsy surgery. Epilepsia 2016; 57 (01) 24-31
  • 21 Nemtsas P, Birot G, Pittau F. et al. Source localization of ictal epileptic activity based on high-density scalp EEG data. Epilepsia 2017; 58 (06) 1027-1036
  • 22 Cosandier-Rimélé D, Merlet I, Badier JM, Chauvel P, Wendling F. The neuronal sources of EEG: modeling of simultaneous scalp and intracerebral recordings in epilepsy. Neuroimage 2008; 42 (01) 135-146
  • 23 Troester M, Haine-Schlagel R, Ng YT. et al. EEG and video-EEG seizure monitoring has limited utility in patients with hypothalamic hamartoma and epilepsy. Epilepsia 2011; 52 (06) 1137-1143
  • 24 Wyllie E, Lachhwani DK, Gupta A. et al. Successful surgery for epilepsy due to early brain lesions despite generalized EEG findings. Neurology 2007; 69 (04) 389-397
  • 25 Boshuisen K, van Schooneveld MM, Leijten FS. et al. Contralateral MRI abnormalities affect seizure and cognitive outcome after hemispherectomy. Neurology 2010; 75 (18) 1623-1630
  • 26 Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol 2016; 15 (04) 420-433
  • 27 Lee YJ. Advanced neuroimaging techniques for evaluating pediatric epilepsy. Clin Exp Pediatr 2020; 63 (03) 88-95
  • 28 Bernasconi A, Cendes F, Theodore WH. et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia 2019; 60 (06) 1054-1068
  • 29 Knake S, Triantafyllou C, Wald LL. et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 2005; 65 (07) 1026-1031
  • 30 Zijlmans M, de Kort GA, Witkamp TD. et al. 3T versus 1.5T phased-array MRI in the presurgical work-up of patients with partial epilepsy of uncertain focus. J Magn Reson Imaging 2009; 30 (02) 256-262
  • 31 Opheim G, van der Kolk A, Markenroth Bloch K. et al. 7T Epilepsy Task Force Consensus recommendations on the use of 7T MRI in clinical practice. Neurology 2021; 96 (07) 327-341
  • 32 Bruggemann JM, Wilke M, Som SS, Bye AM, Bleasel A, Lawson JA. Voxel-based morphometry in the detection of dysplasia and neoplasia in childhood epilepsy: combined grey/white matter analysis augments detection. Epilepsy Res 2007; 77 (2–3): 93-101
  • 33 Winston GP, Vos SB, Burdett JL, Cardoso MJ, Ourselin S, Duncan JS. Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia 2017; 58 (09) 1645-1652
  • 34 Bien CG, Szinay M, Wagner J, Clusmann H, Becker AJ, Urbach H. Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch Neurol 2009; 66 (12) 1491-1499
  • 35 Leach JL, Miles L, Henkel DM. et al. Magnetic resonance imaging abnormalities in the resection region correlate with histopathological type, gliosis extent, and postoperative outcome in pediatric cortical dysplasia. J Neurosurg Pediatr 2014; 14 (01) 68-80
  • 36 Oluigbo CO, Wang J, Whitehead MT. et al. The influence of lesion volume, perilesion resection volume, and completeness of resection on seizure outcome after resective epilepsy surgery for cortical dysplasia in children. J Neurosurg Pediatr 2015; 15 (06) 644-650
  • 37 Juhász C, John F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure 2020; 77: 15-28
  • 38 Hyslop A, Miller I, Bhatia S, Resnick T, Duchowny M, Jayakar P. Minimally resective epilepsy surgery in MRI-negative children. Epileptic Disord 2015; 17 (03) 263-274
  • 39 Moon HJ, Kim DW, Chung CK. et al. Change of patient selection strategy and improved surgical outcome in MRI-negative neocortical epilepsy. J Epilepsy Res 2016; 6 (02) 66-74
  • 40 Kim DW, Lee SK, Moon HJ, Jung KY, Chu K, Chung CK. Surgical treatment of nonlesional neocortical epilepsy: long-term longitudinal study. JAMA Neurol 2017; 74 (03) 324-331
  • 41 Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy a meta-analysis. Seizure 2007; 16 (06) 509-520
  • 42 Traub-Weidinger T, Weidinger P, Gröppel G. et al. Presurgical evaluation of pediatric epilepsy patients prior to hemispherotomy: the prognostic value of 18F-FDG PET. J Neurosurg Pediatr 2016; 25 (06) 683-688
  • 43 Lamarche F, Job AS, Deman P. et al. Correlation of FDG-PET hypometabolism and SEEG epileptogenicity mapping in patients with drug-resistant focal epilepsy. Epilepsia 2016; 57 (12) 2045-2055
  • 44 Bansal L, Miller I, Hyslop A, Bhatia S, Duchowny M, Jayakar P. PET hypermetabolism in medically resistant childhood epilepsy: incidence, associations, and surgical outcome. Epilepsia 2016; 57 (03) 436-444
  • 45 Schur S, Allen V, White A. et al. Significance of FDG-PET hypermetabolism in children with intractable focal epilepsy. Pediatr Neurosurg 2018; 53 (03) 153-162
  • 46 Alkonyi B, Chugani HT, Juhász C. Transient focal cortical increase of interictal glucose metabolism in Sturge-Weber syndrome: implications for epileptogenesis. Epilepsia 2011; 52 (07) 1265-1272
  • 47 Elkins KC, Moncayo VM, Kim H, Olson LD. Utility of gray-matter segmentation of ictal-Interictal perfusion SPECT and interictal 18F-FDG-PET in medically refractory epilepsy. Epilepsy Res 2017; 130: 93-100
  • 48 Perry MS, Bailey L, Freedman D. et al. Coregistration of multimodal imaging is associated with favourable two-year seizure outcome after paediatric epilepsy surgery. Epileptic Disord 2017; 19 (01) 40-48
  • 49 Starnes K, Depositario-Cabacar D, Wong-Kisiel L. Presurgical evaluation strategies for intractable epilepsy of childhood. Semin Pediatr Neurol 2021; 39: 100915
  • 50 De Blasi B, Barnes A, Galazzo IB. et al. Age-specific 18F-FDG image processing pipelines and analysis are essential for individual mapping of seizure foci in pediatric patients with intractable epilepsy. J Nucl Med 2018; 59 (10) 1590-1596
  • 51 Rubí S, Setoain X, Donaire A. et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia 2011; 52 (12) 2216-2224
  • 52 Fernández S, Donaire A, Serès E. et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res 2015; 111: 1-9
  • 53 Tóth M, Barsi P, Tóth Z. et al. The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 2021; 21 (01) 363
  • 54 LoPinto-Khoury C, Sperling MR, Skidmore C. et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia 2012; 53 (02) 342-348
  • 55 Capraz IY, Kurt G, Akdemir Ö. et al. Surgical outcome in patients with MRI-negative, PET-positive temporal lobe epilepsy. Seizure 2015; 29: 63-68
  • 56 Yang PF, Pei JS, Zhang HJ. et al. Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav 2014; 41: 91-97
  • 57 von Oertzen TJ. PET and ictal SPECT can be helpful for localizing epileptic foci. Curr Opin Neurol 2018; 31 (02) 184-191
  • 58 Grünwald F, Menzel C, Pavics L. et al. Ictal and interictal brain SPECT imaging in epilepsy using technetium-99m-ECD. J Nucl Med 1994; 35 (12) 1896-1901
  • 59 O'Brien TJ, So EL, Mullan BP. et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998; 50 (02) 445-454
  • 60 Matsuda H, Matsuda K, Nakamura F. et al. Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann Nucl Med 2009; 23 (03) 283-291
  • 61 Aungaroon G, Trout A, Radhakrishnan R. et al. Impact of radiotracer injection latency and seizure duration on subtraction ictal SPECT co-registered to MRI (SISCOM) performance in children. Clin Neurophysiol 2018; 129 (09) 1842-1848
  • 62 Desai A, Bekelis K, Thadani VM. et al. Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia 2013; 54 (02) 341-350
  • 63 Kankirawatana P, Mohamed IS, Lauer J. et al; AS. Relative contribution of individual versus combined functional imaging studies in predicting seizure freedom in pediatric epilepsy surgery: an area under the curve analysis. Neurosurg Focus 2020; 48 (04) E13
  • 64 Stamoulis C, Verma N, Kaulas H. et al. The promise of subtraction ictal SPECT co-registered to MRI for improved seizure localization in pediatric epilepsies: affecting factors and relationship to the surgical outcome. Epilepsy Res 2017; 129: 59-66
  • 65 Hlauschek G, Sinclair B, Brinkmann B. et al. The effect of injection time on rates of epileptogenic zone localization using SISCOM and STATISCOM. Epilepsy Behav 2021; 118: 107945
  • 66 Bagić AI, Knowlton RC, Rose DF, Ebersole JS. ACMEGS Clinical Practice Guideline (CPG) Committee. American Clinical Magnetoencephalography Society Clinical Practice Guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol 2011; 28 (04) 348-354
  • 67 Burgess RC, Funke ME, Bowyer SM, Lewine JD, Kirsch HE, Bagić AI. ACMEGS Clinical Practice Guideline (CPG) Committee. American Clinical Magnetoencephalography Society Clinical Practice Guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol 2011; 28 (04) 355-361
  • 68 Bagić AI, Knowlton RC, Rose DF, Ebersole JS. ACMEGS Clinical Practice Guideline (CPG) Committee. American Clinical Magnetoencephalography Society Clinical Practice Guideline 3: MEG-EEG reporting. J Clin Neurophysiol 2011; 28 (04) 362-363
  • 69 Bagić AI, Barkley GL, Rose DF, Ebersole JS. ACMEGS Clinical Practice Guideline Committee. American Clinical Magnetoencephalography Society Clinical Practice Guideline 4: qualifications of MEG-EEG personnel. J Clin Neurophysiol 2011; 28 (04) 364-365
  • 70 Otsubo H, Ogawa H, Pang E, Wong SM, Ibrahim GM, Widjaja E. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expert Rev Neurother 2021; 21 (11) 1225-1240
  • 71 Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 2005; 46 (05) 669-676
  • 72 Oishi M, Otsubo H, Kameyama S. et al. Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia 2002; 43 (11) 1390-1395
  • 73 Bagic A, Funke ME, Ebersole J. ACMEGS Position Statement Committee. American Clinical MEG Society (ACMEGS) position statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical evaluation of patients with medically intractable localization-related epilepsy. J Clin Neurophysiol 2009; 26 (04) 290-293
  • 74 Stefan H, Hummel C, Scheler G. et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 2003; 126 (Pt 11): 2396-2405
  • 75 Sutherling WW, Mamelak AN, Thyerlei D. et al. Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 2008; 71 (13) 990-996
  • 76 Knowlton RC, Elgavish RA, Bartolucci A. et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 2008; 64 (01) 35-41
  • 77 Murakami H, Wang ZI, Marashly A. et al. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 2016; 139 (11) 2935-2947
  • 78 RamachandranNair R, Otsubo H, Shroff MM. et al. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia 2007; 48 (01) 149-157
  • 79 Kim D, Joo EY, Seo DW. et al. Accuracy of MEG in localizing irritative zone and seizure onset zone: quantitative comparison between MEG and intracranial EEG. Epilepsy Res 2016; 127: 291-301
  • 80 Tanaka N, Papadelis C, Tamilia E. et al. Magnetoencephalographic spike analysis in patients with focal cortical dysplasia: what defines a “dipole cluster”?. Pediatr Neurol 2018; 83: 25-31
  • 81 Wu JY, Sutherling WW, Koh S. et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology 2006; 66 (08) 1270-1272
  • 82 Jansen FE, Huiskamp G, van Huffelen AC. et al. Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia 2006; 47 (01) 108-114
  • 83 Obaid S, Zerouali Y, Nguyen DK. Insular epilepsy: semiology and noninvasive investigations. J Clin Neurophysiol 2017; 34 (04) 315-323
  • 84 Mohamed IS, Gibbs SA, Robert M, Bouthillier A, Leroux JM, Khoa Nguyen D. The utility of magnetoencephalography in the presurgical evaluation of refractory insular epilepsy. Epilepsia 2013; 54 (11) 1950-1959
  • 85 Bagić AI, Funke ME, Kirsch HE, Tenney JR, Zillgitt AJ, Burgess RC. The 10 common evidence-supported indications for MEG in epilepsy surgery: an illustrated compendium. J Clin Neurophysiol 2020; 37 (06) 483-497
  • 86 Bagić AI, Bowyer SM, Kirsch HE, Funke ME, Burgess RC. ACMEGS Position Statement Committee. American Clinical MEG Society (ACMEGS) Position Statement #2: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical mapping of eloquent cortices of patients preparing for surgical interventions. J Clin Neurophysiol 2017; 34 (03) 189-195
  • 87 Babajani-Feremi A, Holder CM, Narayana S. et al. Predicting postoperative language outcome using presurgical fMRI, MEG, TMS, and high gamma ECoG. Clin Neurophysiol 2018; 129 (03) 560-571
  • 88 Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14 (01) 68-78
  • 89 Liégeois F, Cross JH, Gadian DG, Connelly A. Role of fMRI in the decision-making process: epilepsy surgery for children. J Magn Reson Imaging 2006; 23 (06) 933-940
  • 90 Sidhu MK, Duncan JS, Sander JW. Neuroimaging in epilepsy. Curr Opin Neurol 2018; 31 (04) 371-378
  • 91 Szaflarski JP, Gloss D, Binder JR. et al. Practice guideline summary: use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2017; 88 (04) 395-402
  • 92 Warbrick T. Simultaneous EEG-fMRI: what have we learned and what does the future hold?. Sensors (Basel) 2022; 22 (06) 2262
  • 93 Khoo HM, von Ellenrieder N, Zazubovits N, He D, Dubeau F, Gotman J. The spike onset zone: the region where epileptic spikes start and from where they propagate. Neurology 2018; 91 (07) e666-e674
  • 94 An D, Fahoum F, Hall J, Olivier A, Gotman J, Dubeau F. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia 2013; 54 (12) 2184-2194
  • 95 Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 2002; 43 (03) 219-227
  • 96 Diamond JM, Chapeton JI, Theodore WH, Inati SK, Zaghloul KA. The seizure onset zone drives state-dependent epileptiform activity in susceptible brain regions. Clin Neurophysiol 2019; 130 (09) 1628-1641
  • 97 Nie JZ, Karras CL, Trybula SJ, Texakalidis P, Alden TD. The role of neurosurgery in the management of tuberous sclerosis complex-associated epilepsy: a systematic review. Neurosurg Focus 2022; 52 (05) E6
  • 98 Gummadavelli A, Zaveri HP, Spencer DD, Gerrard JL. Expanding brain-computer interfaces for controlling epilepsy networks: novel thalamic responsive neurostimulation in refractory epilepsy. Front Neurosci 2018; 12: 474
  • 99 Ali I, Houck K. Neuromodulation in pediatric epilepsy. Neurol Clin 2021; 39 (03) 797-810
  • 100 Narasimhan S, Kundassery KB, Gupta K. et al. Seizure-onset regions demonstrate high inward directed connectivity during resting-state: an SEEG study in focal epilepsy. Epilepsia 2020; 61 (11) 2534-2544
  • 101 Shah P, Bernabei JM, Kini LG. et al. High interictal connectivity within the resection zone is associated with favorable post-surgical outcomes in focal epilepsy patients. Neuroimage Clin 2019; 23: 101908
  • 102 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001; 98 (02) 676-682
  • 103 Boerwinkle VL, Mirea L, Gaillard WD. et al. Resting-state functional MRI connectivity impact on epilepsy surgery plan and surgical candidacy: prospective clinical work. J Neurosurg Pediatr 2020; 25 (06) 574-581
  • 104 Jackson GD, Pedersen M, Harvey AS. How small can the epileptogenic region be? A case in point. Neurology 2017; 88 (21) 2017-2019
  • 105 Lee HW, Arora J, Papademetris X. et al. Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity. Neurology 2014; 83 (24) 2269-2277
  • 106 Boerwinkle VL, Mohanty D, Foldes ST. et al. Correlating resting-state functional magnetic resonance imaging connectivity by independent component analysis-based epileptogenic zones with intracranial electroencephalogram localized seizure onset zones and surgical outcomes in prospective pediatric intractable epilepsy study. Brain Connect 2017; 7 (07) 424-442
  • 107 Baxendale S, Wilson SJ, Baker GA. et al. Indications and expectations for neuropsychological assessment in epilepsy surgery in children and adults. Epileptic Disord 2019; 21 (03) 221-234
  • 108 McLellan A, Davies S, Heyman I. et al. Psychopathology in children with epilepsy before and after temporal lobe resection. Dev Med Child Neurol 2005; 47 (10) 666-672
  • 109 Colonnelli MC, Cross JH, Davies S. et al. Psychopathology in children before and after surgery for extratemporal lobe epilepsy. Dev Med Child Neurol 2012; 54 (06) 521-526
  • 110 Koop JI, Credille K, Wang Y. et al. Determination of language dominance in pediatric patients with epilepsy for clinical decision-making: correspondence of intracarotid amobarbitol procedure and fMRI modalities. Epilepsy Behav 2021; 121 (Pt A): 108041
  • 111 Lefaucheur JP, Picht T. The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin 2016; 46 (02) 125-133
  • 112 Narayana S, Gibbs SK, Fulton SP. et al. Clinical utility of transcranial magnetic stimulation (TMS) in the presurgical evaluation of motor, speech, and language functions in young children with refractory epilepsy or brain tumor: preliminary evidence. Front Neurol 2021; 12: 650830