Subscribe to RSS
DOI: 10.1055/s-0043-101820
Optogenetik – eine Chance für fortgeschrittene retinale Dystrophien
Optogenetics: A Therapeutic Option for Advanced Retinal DystrophiesPublication History
eingereicht 09 November 2016
akzeptiert 11 January 2017
Publication Date:
02 March 2017 (online)
Zusammenfassung
Die Optogenetik nutzt genetisch modifizierte lichtaktive Proteine, um Zellen durch Licht nicht invasiv zu manipulieren. Der Prototyp dieser Proteine ist Channelrhodopsin2 (ChR2), ein unselektiver Kationenkanal. Dieser kann elektrisch erregbare Zellen durch Lichtimpulse depolarisieren. Die Kombination von Channelrhodopsin und Halorhodopsin (eNpHR), eine hyperpolarisierende lichtgetriebene Cl−-Pumpe, ermöglicht eine komplexe Modulation neuronaler Aktivität sowohl in vitro als auch in vivo. Sehr schnell stellte sich heraus, dass die Optogenetik für die Behandlung von Sehbehinderungen, die mit der Degeneration der Photorezeptoren einhergehen, gute Chancen zur Therapie bietet. Dabei werden funktionslose Photorezeptoren durch die ektopische Expression der hyperpolarisierenden Pumpe eNpHR reaktiviert. Aber auch andere Zellen der Retina können durch die induzierte Expression von ChR2 die Aufgabe des Lichtempfangs übernehmen und damit zu künstlichen Photorezeptoren werden. Mit diesem Übersichtsartikel möchten wir eine kurze Einführung zur Retina und deren Rolle sowohl in der physiologischen als auch in der pathologischen Lichtwahrnehmung geben. Weiterhin werden optogenetische Strategien zur Wiederherstellung der Lichtwahrnehmungen aufgezeigt und strukturelle sowie funktionelle Eigenschaften der auf Rhodopsin basierenden optogenetischen Werkzeuge diskutiert. Letztendlich wird die Anwendbarkeit für die Wiederherstellung des Sehvermögens durch die Optogenetik bewertet.
Abstract
Optogenetics refers to the genetic modification of cells to express light-sensitive proteins, which mediate ion flow or secondary signalling cascades upon light exposure. Channelrhodopsin, the most famous example, is an unselective cation channel, which opens when exposed to blue light, thus mediating the depolarisation of the expressing cell. Along with other light-sensitive proteins such as the chloride pump eNpHR, which mediates light-activated hyperpolarisation, the optogenetic toolset offers a wide range of non-invasive single cell manipulations. Due to the direct modulation of the membrane potential, the in-vivo and in-vitro application of optogenetics in neuronal cells seemed to be of outstanding interest. Soon it became evident that these tools are well-suited to treat retinas of patients suffering from photoreceptor degeneration, independently of the underlying mutation. The ectopic expression of channelrhodopsin or eNpHR may cause inactive photoreceptors or other, intact cells of the retina to become sensitive to light. Thus, the most basic function of the retina, the perception of light, can be restored. This review gives a short overview of the retinal structure as well as its physiological and pathological function as the primary light-perceiving tissue. We will focus on different optogenetic strategies to restore visual function in previously blind retinas.
-
Literatur
- 1 Masland RH. The fundamental plan of the retina. Nat Neurosci 2001; 4: 877-886
- 2 Rodieck RW. The First Steps in Seeing. Sunderland, MA: Sinauer Associates; 1998
- 3 Baden T, Berens P, Franke K. et al. The functional diversity of retinal ganglion cells in the mouse. Nature 2016; 529: 345-350
- 4 Roska B, Werblin F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 2001; 410: 583-587
- 5 Provis JM, Diaz CM, Dreher B. Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol 1998; 54: 549-580
- 6 Wald G. The receptors of human color vision. Science 1964; 145: 1007-1016
- 7 Bramall AN, Wright AF, Jacobson SG. et al. The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 2010; 33: 441-472
- 8 Al Gwairi O, Thach L, Zheng W. et al. Cellular and molecular pathology of age-related macular degeneration: potential role for proteoglycans. J Ophthalmol 2016; 2016: 2913612
- 9 Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368: 1795-1809
- 10 Grieger JC, Samulski RJ. Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 2005; 99: 119-145
- 11 Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene therapy. Neuroscientist 2015; 21: 84-98
- 12 Salganik M, Hirsch ML, Samulski RJ. Adeno-associated virus as a mammalian DNA vector. Microbiol Spectr 2015;
- 13 Willett K, Bennett J. Immunology of AAV-mediated gene transfer in the eye. Front Immunol 2013; 4: 261
- 14 De Kozak Y, Andrieux K, Villarroya H. et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 2004; 34: 3702-3712
- 15 Van der Voet JC, Liem A, Otto AJ. et al. Intraocular antibody synthesis during experimental uveitis. Invest Ophthalmol Vis Sci 1989; 30: 316-322
- 16 Kotterman MA, Yin L, Strazzeri JM. et al. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther 2015; 22: 116-126
- 17 Hauswirth WW, Aleman TS, Kaushal S. et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979-990
- 18 Jacobson SG, Cideciyan AV, Ratnakaram R. et al. Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012; 130: 9-24
- 19 Maguire AM, Simonelli F, Pierce EA. et al. Safety and efficacy of gene transfer for Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2240-2248
- 20 McPhee SW, Janson CG, Li C. et al. Immune responses to AAV in a phase I study for Canavan disease. J Gene Med 2006; 8: 577-588
- 21 Nathwani AC, Tuddenham EGD, Rangarajan S. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357-2365
- 22 Testa F, Maguire AM, Rossi S. et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital amaurosis type 2. Ophthalmology 2013; 120: 1283-1291
- 23 Weleber RG, Pennesi ME, Wilson DJ. et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology 2016; 123: 1606-1620
- 24 Cideciyan AV, Jacobson SG, Beltran WA. et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A 2013; 110: E517-E525
- 25 Jacobson SG, Cideciyan AV, Roman AJ. et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 2015; 372: 1920-1926
- 26 Froger N, Moutsimilli L, Cadetti L. et al. Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. Prog Retin Eye Res 2014; 41: 44-63
- 27 Léveillard T, Fridlich R, Clérin E. et al. Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors. C R Biol 2014; 337: 207-213
- 28 Trifunović D, Sahaboglu A, Kaur J. et al. Neuroprotective strategies for the treatment of inherited photoreceptor degeneration. Curr Mol Med 2012; 12: 598-612
- 29 Jayakody SA, Gonzalez-Cordero A, Ali RR. et al. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46: 31-66
- 30 Lakowski J, Gonzalez-Cordero A, West EL. et al. Transplantation of photoreceptor precursors isolated via a cell surface biomarker panel from embryonic stem cell-derived self-forming retina. Stem Cells 2015; 33: 2469-2482
- 31 Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu Rev Biomed Eng 2005; 7: 361-401
- 32 Chader GJ, Weiland J, Humayun MS. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 2009; 175: 317-332
- 33 Zrenner E, Bartz-Schmidt KU, Benav H. et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011; 278: 1489-1497
- 34 Oesterhelt D. The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 1998; 8: 489-500
- 35 Nagel G, Ollig D, Fuhrmann M. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 2002; 296: 2395-2398
- 36 Boyden ES, Zhang F, Bamberg E. et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005; 8: 1263-1268
- 37 Bi A, Cui J, Ma Y-P. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006; 50: 23-33
- 38 Lagali PS, Balya D, Awatramani GB. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11: 667-675
- 39 Busskamp V, Duebel J, Balya D. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010; 329: 413-417
- 40 Jones BW, Pfeiffer RL, Ferrell WD. et al. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res 2016; 150: 149-165
- 41 Marc RE, Jones BW, Watt CB. et al. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607-655
- 42 Pan Z-H, Ganjawala TH, Lu Q. et al. ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS One 2014; 9: e98924
- 43 Tomita H, Sugano E, Isago H. et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 2010; 90: 429-436
- 44 Isago H, Sugano E, Wang Z. et al. Age-dependent differences in recovered visual responses in Royal College of Surgeons rats transduced with the channelrhodopsin-2 gene. J Mol Neurosci 2012; 46: 393-400
- 45 Tomita H, Sugano E, Murayama N. et al. Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1. Mol Ther 2014; 22: 1434-1440
- 46 Sugano E, Isago H, Wang Z. et al. Immune responses to adeno-associated virus type 2 encoding channelrhodopsin-2 in a genetically blind rat model for gene therapy. Gene Ther 2011; 18: 266-274
- 47 Ivanova E, Hwang GS, Pan ZH. et al. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci 2010; 51: 5288-5296
- 48 Lin JY, Knutsen PM, Muller A. et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013; 16: 1499-1508
- 49 Lin B, Koizumi A, Tanaka N. et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A 2008; 105: 16009-16014
- 50 Sengupta A, Chaffiol A, Macé E. et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol Med 2016; 8: 1248-1264
- 51 Degenaar P, Grossman N, Memon MA. et al. Optobionic vision – a new genetically enhanced light on retinal prosthesis. J Neural Eng 2009; 6: 035007
- 52 Klapoetke NC, Murata Y, Kim SS. et al. Independent optical excitation of distinct neural populations. Nat Methods 2014; 11: 338-346
- 53 Kim DS, Matsuda T, Cepko CL. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci 2008; 28: 7748-7764
- 54 Matsuda T, Cepko CL. Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 2007; 104: 1027-1032
- 55 Dalkara D, Byrne LC, Klimczak RR. et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2013; 5: 189ra76
- 56 Cronin T, Vandenberghe LH, Hantz P. et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2014; 6: 1175-1190
- 57 Doroudchi MM, Greenberg KP, Liu J. et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011; 19: 1220-1229
- 58 Macé E, Caplette R, Marre O. et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther 2015; 23: 7-16
- 59 Kleinlogel S, Feldbauer K, Dempski RE. et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 2011; 14: 513-518
- 60 Van Wyk M, Pielecka-Fortuna J, Löwel S. et al. Restoring the ON switch in blind retinas: Opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol 2015; 13: e1002143
- 61 Cehajic-Kapetanovic J, Eleftheriou C, Allen AE. et al. Restoration of vision with ectopic expression of human rod opsin. Curr Biol 2015; 25: 2111-2122
- 62 Gaub BM, Berry MH, Holt AE. et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther 2015; 23: 1562-1571
- 63 Lin B, Masland RH, Strettoi E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 2009; 88: 589-599
- 64 Jacobson SG, Roman AJ, Aleman TS. et al. Normal central retinal function and structure preserved in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2010; 51: 1079-1085
- 65 Bainbridge JWB, Smith AJ, Barker SS. et al. Effect of gene therapy on visual function in Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2231-2239
- 66 Bruewer AR, Mowat FM, Bartoe JT. et al. Evaluation of lateral spread of transgene expression following subretinal AAV-mediated gene delivery in dogs. PLoS One 2013; 8: e60218
- 67 Li Q, Timmers AM, Guy J. et al. Cone-specific expression using a human red opsin promoter in recombinant AAV. Vision Res 2008; 48: 332-338
- 68 Vandenberghe LH, Bell P, Maguire AM. et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One 2013; 8: e53463
- 69 Ye G-J, Budzynski E, Sonnentag P. et al. Cone-specific promoters for gene therapy of achromatopsia and other retinal diseases. Hum Gene Ther 2016; 27: 72-82
- 70 Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 2008; 36: 129-139
- 71 Chuong AS, Miri ML, Busskamp V. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 2014; 17: 1123-1129
- 72 Provis JM, Dubis AM, Maddess T. et al. Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone. Prog Retin Eye Res 2013; 35: 63-81
- 73 Govorunova EG, Sineshchekov OA, Janz R. et al. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 2015; 349: 647-650
- 74 Francis PJ, Mansfield B, Rose S. Proceedings of the First International Optogenetic Therapies for Vision Symposium. Transl Vis Sci Technol 2013; 2: 4
- 75 Cepko C. Neuroscience. Seeing the light of day. Science 2010; 329: 403-404
- 76 Sahel J-A, Roska B. Gene therapy for blindness. Annu Rev Neurosci 2013; 36: 467-488