Aktuelle Ernährungsmedizin 2017; 42(04): 316-327
DOI: 10.1055/s-0043-109134
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Einfluss verschiedener Genvarianten auf den Erfolg von Adipositastherapien

Influence of Genetic Variants on the Effectivity of Obesity Therapy
Anna Mühlberger
Institut für Ernährungsmedizin (180), Universität Hohenheim
,
Stephan C. Bischoff
Institut für Ernährungsmedizin (180), Universität Hohenheim
,
Sandrine Louis
Institut für Ernährungsmedizin (180), Universität Hohenheim
› Author Affiliations
Further Information

Publication History

Publication Date:
19 June 2017 (online)

Zusammenfassung

Die Ausbreitung der Adipositas und ihrer Folgen entwickelt sich immer mehr zu einem weltweiten Problem. Adipositas ist eine chronische Krankheit und prädisponiert für viele weitere Erkrankungen. Es gibt vielfältige Ursachen für die Entstehung von Übergewicht. Eine wichtige Komponente spielt die Vererbung. Um den genetischen Hintergrund der Adipositas besser zu verstehen, werden genomweite Assoziationsstudien durchgeführt. Diese Analysen identifizierten bisher über 100 Genloci, die mit der Adipositas in Verbindung gebracht werden konnten. Weitere Forschungsarbeiten befassen sich mit der Hypothese, dass Polymorphismen der adipositasassoziierten Gene das Ansprechen auf Behandlungsansätze beeinflussen könnten. 90 % aller Varianten des Humangenoms bestehen aus Einzelnukleotid-Polymorphismen, auch „single nucleotide polymorphisms“ (SNPs) genannt. Diese Genvarianten können mit einem bestimmten Phänotyp bzw. einer Krankheit assoziiert werden. Inwieweit sich SNPs auf den Energiestoffwechsel und die Regulation des Körpergewichts auswirken, ist noch nicht vollständig aufgeklärt. Dennoch wird vermutet, dass der Genotyp einen Einfluss auf die Entstehung, sowie den Behandlungserfolg von Adipositas ausübt. Individuen unterscheiden sich während einer kalorienreduzierten Diät oder nach einem bariatrischen Eingriff im Ausmaß der Gewichtsabnahme. SNPs könnten diese Unterschiede erklären. Welche Genvarianten sich als genotypische Marker im Vorfeld einer Gewichtsreduktion eignen und inwiefern sich dadurch der Erfolg prognostizieren lässt, werden jedoch zukünftige Forschungen zeigen müssen. Mit diesem Wissen könnte die bestmögliche Adipositastherapie für jeden einzelnen Patienten durchgeführt werden. Dieser Artikel gibt einen Überblick über aktuelle Studien, die den Zusammenhang von Genvarianten und Gewichtsverlust im Rahmen einer Adipositastherapie untersucht haben.

Abstract

Obesity is a growing worldwide problem. This chronical disease is associated with various comorbidities. The causes of obesity are multifarious, inheritance plays an important role. To better understand the genetic basis of obesity genome-wide association studies were and still are conducted. These analyses indicate which genes are associated with obesity. Up to now, over 100 genes have been identified. Single nucleotide polymorphisms (SNPs) variants represent 90 % of the genetic polymorphism in humans. Their effects on gene functions and phenotypes are relevant to certain disease pathogenesis. Obese patients have shown varying success with losing weight. SNPs may be responsible for this diversity among individuals. Recent study results indicate that obesity predisposing SNPs may influence the response to treatment. Future genetic studies have to point out which genetic variants may be considered as genetic markers to help clinicians choosing the most adapted diet or surgery for each obese patient individually. This article summarizes recently published studies about the influence of SNPs on the effectivity of obesity therapy.

 
  • Literatur

  • 1 World Health Organization. Obesity: Preventing and managing the global epidemic. WHO technical report series: 894. Geneva: 2000
  • 2 World Health Organization. Global Status Report: On noncommunicable diseases. 2014
  • 3 Després JP, Lemieux I, Prud’homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 2001; 322: 716-720
  • 4 Deutsche Adipositas-Gesellschaft e. V., Deutsche Diabetes Gesellschaft, Deutsche Gesellschaft für Ernährung e. V., Deutsche Gesellschaft für Ernährungsmedizin e. V.. Hrsg. S3-Leitlinie: Interdisziplinäre Leitline der Qualität S3 zur "Prävention und Therapie der Adipositas", Version 2.0. 2014
  • 5 Cook Z, Kirk S, Lawrenson S. et al. Use of BMI in the assessment of undernutrition in older subjects: reflecting on practice. Proc Nutr Soc 2005; 64: 313-317
  • 6 Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ 1995; 311: 158-161
  • 7 Stunkard AJ, Sörensen T, Craig H. et al. An Adoption Study of Human Obesity. N Engl J Med 1986; 314: 193-198
  • 8 Wardle J, Carmell S, Haworth CM. et al. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 2008; 87: 398-404
  • 9 Malis C, Rasmussen MC, Poulsen P. et al. Total and regional fat distribution is strongly influenced by genetic factors in young and elderly twins. Obes Res 2005; 13: 2139-2145
  • 10 Locke AE, Kahali B, Berndt SI. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015; 518: 197-206
  • 11 Hindorff L, Sethupathy P, Junkins H. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362-9367
  • 12 Montague CT, Farooqi IS, Whitehead J. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 6636: 903-908
  • 13 Farooqi S, O’Rahilly S. Human disorders of leptin action. J of Endocr 2015; 223: T63-T70
  • 14 Lubrano-Berthelier C, Cavazos M, Dubern B. et al. Molecular genetics of human obesity-associated MC4R mutations. Ann N Y Acad Sci 2003; 994: 49-57
  • 15 Hinney A, Volckmar A-L, Knoll N. Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci 2013; 114: 147-191
  • 16 van der Klaauw AA, Keogh JM, Henning E. et al. Divergent effects of central melanocortin signalling on fat and sucrose preference in humans. Nat Commun 2016; 4: 13055
  • 17 Hinney A, Schmidt A, Nottebom K. et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab 1999; 84: 1483-1486
  • 18 Hinney A, Herrfurth N, Schonnop L. et al. Genetik und Epigenetik der Adipositas. Bundesgesundheitsblatt 2015; 58: 154-158
  • 19 Stutzmann F, Vatin V, Cauchi S. et al. Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a janus obesity gene. Hum Mol Genet 2007; 16: 1837-1844
  • 20 Geller F, Reichenwald K, Dempfle A. et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am J Hum Genet 2004; 74: 572-581
  • 21 Hatoum IJ, Stylopoulos N, Vanhoose AM. et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab 2012; 97: E1023-1031
  • 22 Yang J, Manolio TA, Pasquale LR. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genet 2011; 43: 519-525
  • 23 Romeis JC, Grant JD, Knopik VS. et al. The genetics of middle-age spread in middle-class males. Twin Res Hum Genet 2004; 7: 596-602
  • 24 Rankinen T, Zuberi A, Chagnon YC. et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14: 529-644
  • 25 Farooqi I, Matarese G, Lord G. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002; 10: 1093-1103
  • 26 Hindorff L, Sethupathy P, Junkins H. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci 2009; 106: 9362-9367
  • 27 Schaaf C, Zschocke J. Basiswissen Humangenetik. 2. Auflage, Heidelberg: Springer Verlag; 2013
  • 28 HapMapConsortium. The International HapMap Project. Nature 2003; 426: 789-796
  • 29 Yazdi FT, Clee SM, Meyre D. Obesity genetics in mouse and human: back and forth, and back again. PeerJ 2015; 24: e856
  • 30 Sacks FM, Bray G, Carey V. et al. Comparison of Weight-Loss Diets with Different Compositions of Fat, Protein, and Carbohydrates. N Engl J Med 2009; 360: 859-873
  • 31 Shai I, Schwarzfuchs D, Henkin Y. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359: 229-241
  • 32 Petersen M, Taylor MA, Saris WH. et al. Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content. Int J Obes (Lond) 2006; 30: 552-560
  • 33 Speliotes EK, Willer CJ, Berndt SI. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937-948
  • 34 Zhang X, Qi Q, Zhang C. et al. FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets. Diabetes 2012; 61: 3005-3011
  • 35 Qi Q, Bray GA, Hu FB. et al. Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: the Preventing Overweight Using Novel Dietary Strategies trial. Am J Clin Nutr 2012; 92: 506-513
  • 36 Stocks T, Ängquist L, Banasik K. et al. TFAP2B Influences the Effect of Dietary Fat on Weight Loss under Energy Restriction. PLoS One 2012; 7: e43212
  • 37 Frayling TM, Timpson NJ, Weedon MN. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316: 889-894
  • 38 Grau K, Hansen T, Host C. et al. Macronutrient-specific effect of FTO rs9939609 in response to a 10-week randomized hypo-energetic diet among obese Europeans. Int J Obes 2009; 33: 1227-1234
  • 39 Grau K, Cauchi S, Holst C. et al. TCF7L2 rs7903146-macronutrient interaction in obese individuals’ response to a 10-wk randomized hypoenergetic diet. Am J Clin Nutr 2010; 91: 472-479
  • 40 Grant SF, Thorleifsson G, Reynisdottir I. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38: 320-323
  • 41 Helgason A, Pàlsson S, Thorleifsson G. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 2007; 39: 218-225
  • 42 Haupt A, Thamer C, Heni M. et al. Impact of Variation Near MC4R on Whole-body Fat Distribution, Liver Fat, and Weight Loss. Obesity 2009; 17: 1942-1945
  • 43 Haupt A, Thamer C, Machann J. et al. Impact of Variation in the FTO Gene on Whole Body Fat Distribution, Ectopic Fat, and Weight Loss. Obesity 2008; 16: 1969-1972
  • 44 Loos R, Lindgren J, Li CM. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 2008; 40: 768-775
  • 45 Chambers J, Elliott P. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet 2008; 40: 716-718
  • 46 Haupt A, Thamer C, Heni M. et al. Gene Variants of TCF7L2 Influence Weight Loss and Body Composition During Lifestyle Intervention in a Population at Risk for Type 2 Diabetes. Diabetes 2010; 59: 747-750
  • 47 McCaffery J, Jablonski KFP, Dagogo-Jack S. et al. TCF7L2 Polymorphism, Weight Loss and Proinsulin:Insulin Ratio in the Diabetes Prevention Program. PLOS one 2011; DOI: 10.1371/journal.pone.0021518.
  • 48 Heni M, Herzberg-Schäfer S, Machicao F. et al. Dietary Fiber Intake Modulates the Association Betwenn Variants in TCF7L2 and Weight Loss During a Lifestyle Intervention. Diabetes Care 2012; 35: e24
  • 49 Larsen TM, Dalskov SM, van Baak M. et al. Diets with High or Low Protein Content and Glycemic Index for Weight-Loss Maintenance. N Engl J Med 2010; 363: 2102-2113
  • 50 Stocks T, Ängquist L, Hager J. et al. TFAP2B-Dietary Protein and Glycemic Index Interactions and Weight Maintenance after Weight Loss in the DiOGenes Trial. Hum Hered 2013; 75: 213-219
  • 51 Reinehr T, de Sousa G, Toschke AM. et al. Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am J Clin Nutr 2006; 84: 490-496
  • 52 Volckmar AL, Pütter C, Song JY. et al. Analyses of non-synonymous obesity risk alleles in SH2B1 (rs7498665) and APOB48R (rs180743) in obese children and adolescents undergoing a 1-year lifestyle intervention. Exp Clin Endocrinol Diabetes 2013; 121: 334-337
  • 53 de Luis DA, Gonzalez Sagrado M, Aller R. et al. Effects of C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase on weight loss after a hypocaloric diet. Metabolism 2011; 60: 730-734
  • 54 Knoll N, Volckmar AL, Pütter C. et al. The fatty acid amide hydrolase (FAAH) gene variant rs324420 AA/AC is not associated with weight loss in a 1-year lifestyle intervention for obese children and adolescents. Horm Metab Res 2012; 44: 75-77
  • 55 Müller TD, Hinney A, Scherag A. et al. ‘Fat mass and obesity associated’ gene (FTO): no significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in German obese children and adolescents. BMC Med Genet 2008; 17: 85
  • 56 Herbert A, Gerry NP, McQueen MB. et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312: 279-283
  • 57 Reinehr T, Hinney A, Nguyen TT. et al. Evidence of an influence of a polymorphism near the INSIG2 on weight loss during a lifestyle intervention in obese children and adolescents. Diabetes 2008; 57: 623-626
  • 58 Vogel CI, Boes T, Reinehr T. et al. Common variants near MC4R: exploring gender effects in overweight and obese children and adolescents participating in a lifestyle intervention. Obes Facts 2011; 4: 67-75
  • 59 Scherag A, Dina C, Hinney A. et al. Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups. PLoS Genet 2010; 6: e1000916
  • 60 Scherag A, Kleber M, Boes T. et al. SDCCAG8 obesity alleles and reduced weight loss after a lifestyle intervention in overweight children and adolescents. Obesity (Silver Spring) 2012; 20: 466-470
  • 61 Sipe JC, Waalen J, Gerber A. et al. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int J Obes (Lond) 2005; 29: 755-759
  • 62 Herbert A, Gerry NP, McQueen MB. et al. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312: 279-283
  • 63 Chirurgische Arbeitsgemeinschaft für Adipositastherapie. Hrsg. S3-Leitlinie: Chirurgie der Adipositas. 2010
  • 64 Neff K, le Roux C. Bariatric surgery: a best practice article. J Clin Pathol 2013; 66: 90-98
  • 65 Sjöström L, Peltonen M, Jacobson P. Bariatric surgery and long-term cardiovascular events. JAMA 2012; 307: 56-65
  • 66 Buchwald H, Estok R, Fahrbach K. et al. „Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis“. Am J Med 2009; 122: 248
  • 67 Adams T, Gress R, Smith S. Long-term mortality after gastric bypass surgery. N Engl J Med 2007; 357: 753-761
  • 68 le Roux CW, Aylwin SJ, Batterham RL. et al. Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters. Ann Surg 2006; 243: 108-114
  • 69 Maggard MA, Shugarman LR, Suttorp M. et al. Metaanalysis: surgical treatment of obesity. Ann Intern Med 2005; 142: 547-559
  • 70 Pontiroli EA, Pizzocri P, Librenti MC. et al. Laparoscopic adjustable gastric banding for the treatment of morbid (grade 3) obesity and its metabolic complications: a three-year study. J Clin Endocrinol Metab 2002; 87: 3555-3561
  • 71 Balasar Ö, Cakir T, Erkal Ö. et al. The effect of rs9939609 FTO gene polymorphism on weight loss after laparoscopic sleeve gastrectomy. Surgical Endoscopy 2014; SpringerLink: DOI: 10.1007/s00464-015-4169-y.
  • 72 Bandstein M, Schultes B, Ernst B. et al. The Role of FTO and Vitamin D for the Weight Loss Effect of Roux-en-Y Gastric Bypass Surgery in Obese Patients. Obes Surg 2015; DOI: 10.1007/s11695-015-1644-4.
  • 73 Lourenco BH, Qi L, Qillett WC. et al. FTO Genotype, Vitamin D status, and weight gain during childhood. Diabetes 2014; 63: 808-814
  • 74 Liou TH, Chen HH, Wang W. et al. ESR1, FTO, and UCP2 genes interact with bariatric surgery affecting weight loss and glycemic control in severely obese patients. Obes Surg 2011; 21: 1758-1765
  • 75 de Luis DA, Aller R, Conde R. et al. The rs9939609 gene variant in FTO modified the metabolic response of weight loss after a 3-month intervention with a hypocaloric diet. J Investig Med 2013; 61: 22-26
  • 76 Matsuo T, Nakata Y, Murotake Y. et al. Effects of FTO genotype on weight loss and metabolic risk factors in response to calorie restriction among Japanese women. Obesity (Silver Spring) 2012; 20: 1122-1126
  • 77 Sesti G, Perego L, Cardellini M. et al. Impact of Common Polymorphisms in Candidate Genes for Insulin Resistance and Obesity on Weight Loss of Morbidly Obese Subjects after Laparoscopic Adjustable Gastric Banding and Hypocaloric Diet. J Clin Endocrinol Metab 2005; 90: 5064-5069
  • 78 Chen HH, Lee WJ, Wang W. et al. Ala55Val polymorphism on UCP2 Gene Predicts Greater Weight Loss in Morbidly Obese Patients Undergoing Gastric Banding. Obes Surgery 2007; 17: 926-933
  • 79 Matzko ME, Argyropoulos G, Wood GC. et al. Association of Ghrelin Receptor Promoter Polymorphisms with Weight Loss Following Roux-en-Y Gastric Bypass Surgery. Obes Surg 2012; 22: 783-790
  • 80 de Luis DA, Sagrado MG, Izaola O. et al. Influence of Ala54Thr polymorphism of fatty acid-binding protein-2 on clinical results of biliopancreatic diversion. Nutrition 2008; 24: 300-304
  • 81 de Luis DA, Pacheco D, Aller R. et al. Role of the rs6923761 gene variant in glucagon-like peptide 1 receptor gene on cardiovascular risk factors and weight loss after biliopancreatic diversion surgery. Ann Nutr Metab 2014; 65: 359-263
  • 82 de Luis DA, Aller R, Conde R. et al. Effects of RS9939609 gene variant in FTO gene on weight loss and cardiovascular risk factors after biliopancreatic diversion surgery. J Gastrointest Surg 2012; 16: 1194-1198
  • 83 Damcott CM, Feingold E, Moffett SP. et al. Variation in the FABP2 promoter alters transcriptional activity and is associated with body composition and plasma lipid levels. Hum Genet 2003; 112: 610-616
  • 84 Baessler A, Hasinoff MJ, Fischer M. et al. Genetic Linkage and Association of the Growth Hormone Secretagogue Receptor (Ghrelin Receptor) Gene in Human Obesity. Diabet 2005; 54: 259-267
  • 85 Bray MS, Boerwinkle E, Hanis CL. Linkage analysis of candidate obesity genes among the Mexican-American population of Starr County, Texas. Genetic Epidemiology 1999; 16: 397-411
  • 86 Berthier MT, Paradis AM, Tchernof A. et al. The interleukin 6-174G/C polymorphism is associated with indices of obesity in men. J Hum Genet 2003; 48: 9-14
  • 87 Jellema A, Mensink RP, Kromhout D. et al. Metabolic risk markers in an overweight and normal weight population with oversampling of carriers of the IRS-1 972Arg-variant. Atherosclerosis 2003; 171: 75-81
  • 88 Gonzalez Sanchez JL, Serrano Rios M, Fernandez Perez C. et al. Effect of the Pro12Ala polymorphism of the peroxisome proliferatoractivated receptor gamma-2 gene on adiposity, insulin sensitivity and lipid profile in the (Spanish) population. Eur J Endocrinol 2002; 147: 459-501
  • 89 Esterbauer H, Schneitler C, Oberkofler H. et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 2001; 28: 178-183