Aktuelle Neurologie 2017; 44(07): 489-500
DOI: 10.1055/s-0043-111588
© Georg Thieme Verlag KG Stuttgart · New York

Moderne Bildgebung in der Neuroonkologie

Modern Imaging in Neurooncology
Christoph Straube
1   Klinik für RadioOnkologie und Strahlentherapie, Technische Universität München (TUM), Institut für Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Oberschleißheim
Stefanie Bette
3   Institut für Neuroradiologie, Technische Universität München (TUM), München
Thomas Pyka
2   Klinik für Nuklearmedizin, Technische Universität München (TUM), München
Heike Einhellig
2   Klinik für Nuklearmedizin, Technische Universität München (TUM), München
Claus Zimmer
3   Institut für Neuroradiologie, Technische Universität München (TUM), München
Markus Schwaiger
2   Klinik für Nuklearmedizin, Technische Universität München (TUM), München
Stephanie E. Combs
1   Klinik für RadioOnkologie und Strahlentherapie, Technische Universität München (TUM), Institut für Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Oberschleißheim
› Author Affiliations
Further Information

Publication History

Publication Date:
04 September 2017 (online)


Die Bildgebung bei intrakraniellen Malignomen hat sich in den vergangenen beiden Jahrzehnten erheblich gewandelt. Dieser Übersichtsartikel beschreibt den aktuellen Stand der bildgebenden Diagnostik für die drei häufigsten Entitäten, die Gliome, Metastasen und Meningeome und geht dabei sowohl auf technische Grundlagen als auch auf die Anwendung in der Diagnostik, Therapieplanung und im Follow-Up ein.


Imaging of intracranial malignomas has significantly changed over the past two decades. This overview describes the current status of imaging diagnostics for the three most common entities, namely gliomas, metastases and meningiomas, and describes the underlying technical principles as well as its application in diagnostics, therapy planning and follow-up.

  • Literatur

  • 1 Meyding-Lamadé U, Forsting M, Albert F. et al. Accelerated methaemoglobin formation: potential pitfall in early postoperative MRI. Neuroradiology 1993; 35: 178-180
  • 2 Abdullah KG, Lubelski D, Nucifora PGP. et al. Use of diffusion tensor imaging in glioma resection. Neurosurg Focus 2013; 34: E1
  • 3 Ottenhausen M, Krieg SM, Meyer B. et al. Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 2015; 38: E3
  • 4 Pauling L. The oxygen equilibrium of hemoglobin and its structural interpretation. Proc Natl Acad Sci U S A 1935; 21: 186-191
  • 5 Logothetis NK, Pauls J, Augath M. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157
  • 6 Ogawa S, Lee TM, Nayak AS. et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14: 68-78
  • 7 Ogawa S, Lee TM, Kay AR. et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 1990; 87: 9868-9872
  • 8 Gempt J, Förschler A, Buchmann N. et al. Postoperative ischemic changes following resection of newly diagnosed and recurrent gliomas and their clinical relevance. J Neurosurg 2013; 118: 801-808
  • 9 Gempt J, Krieg SM, Hüttinger S. et al. Postoperative ischemic changes after glioma resection identified by diffusion-weighted magnetic resonance imaging and their association with intraoperative motor evoked potentials. J Neurosurg 2013; 119: 829-836
  • 10 Duffau H, Taillandier L. New concepts in the management of diffuse low-grade glioma: Proposal of a multistage and individualized therapeutic approach. Neuro Oncol 2014; 17: 332-342
  • 11 Habermeier A, Graf J, Sandhöfer BF. et al. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-l-tyrosine (FET). Amino Acids 2015; 47: 335-344
  • 12 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131: 1-18
  • 13 Arevalo-Perez J, Peck KK, Young RJ. et al. Dynamic contrast-enhanced perfusion MRI and diffusion-weighted imaging in grading of gliomas. J Neuroimaging 2015; 25: 792-798
  • 14 Usinskiene J, Ulyte A, Bjørnerud A. et al. Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology 2016; 4: 339-350
  • 15 Linn J, Wiesmann M, Brückmann H. Atlas Klinische Neuroradiologie des Gehirns. Heidelberg: Springer; 2011
  • 16 Scott JN, Brasher PMA, Sevick RJ. et al. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 2002; 59: 947-949
  • 17 Lee EJ, Lee SK, Agid R. et al. Preoperative grading of presumptive low-grade astrocytomas on MR imaging: diagnostic value of minimum apparent diffusion coefficient. Am J Neuroradiol 2008; 29: 1872-1877
  • 18 Catalaa I, Henry R, Dillon WP. et al. Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed 2006; 19: 463-475
  • 19 Kickingereder P, Sahm F, Radbruch A. et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 2015; 5: 16238
  • 20 Choi C, Ganji SK, DeBerardinis RJ. et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012; 18: 624-629
  • 21 Ostrom QT, Gittleman H, Liao P. et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014; 16: iv1-iv63
  • 22 Weller M, Cloughesy T, Perry JR. et al. Standards of care for treatment of recurrent glioblastoma – are we there yet?. Neuro Oncol 2013; 15: 4-27
  • 23 Toh CH, Wei KC, Ng SH. et al. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. Am J Neuroradiol 2011; 32: 1646-1651
  • 24 Wang S, Kim SJ, Poptani H. et al. Diagnostic utility of diffusion tensor imaging in differentiating glioblastomas from brain metastases. Am J Neuroradiol 2014; 39: 928-934
  • 25 Law M, Young RJ, Babb JS. et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008; 247: 490-498
  • 26 Jung BC, Arevalo-Perez J, Lyo JK. et al. Comparison of glioblastomas and brain metastases using dynamic contrast-enhanced perfusion MRI. J Neuroimaging 2016; 26: 240-246
  • 27 Radbruch A, Wiestler B, Kramp L. et al. Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol 2013; 82: 552-556
  • 28 Hutterer M, Nowosielski M, Putzer D. et al. [18F]-fluoro-ethyl-l-tyrosine PET: A valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 2013; 15: 341-351
  • 29 Pauleit D, Stoffels G, Bachofner A. et al. Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nucl Med Biol 2009; 36: 779-787
  • 30 Ginsberg LE, Fuller GN, Hashmi M. et al. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: Histopathological evaluation of a series. Surg Neurol 1998; 49: 436-440
  • 31 Perez-Cruet MJ, Adelman L, Anderson M. et al. CT-guided stereotactic biopsy of nonenhancing brain lesions. Stereotact Funct Neurosurg 1993; 61: 105-117
  • 32 Weckesser M, Langen KJ, Rickert CH. et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005; 32: 422-429
  • 33 Calcagni ML, Galli G, Giordano A. et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for Glioma Grading. Clin Nucl Med 2011; 36: 841-847
  • 34 Jansen NL, Graute V, Armbruster L. et al. MRI-suspected low-grade glioma: Is there a need to perform dynamic FET PET?. Eur J Nucl Med Mol Imaging 2012; 39: 1021-1029
  • 35 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 36 Arbizu J, Tejada S, Marti-Climent JM. et al. Quantitative volumetric analysis of gliomas with sequential MRI and 11C-methionine PET assessment: patterns of integration in therapy planning. Eur J Nucl Med Mol Imaging 2012; 39: 771-781
  • 37 Ewelt C, Floeth FW, Felsberg J. et al. Finding the anaplastic focus in diffuse gliomas: The value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg 2011; 113: 541-547
  • 38 La Fougère C, Suchorska B, Bartenstein P. et al. Molecular imaging of gliomas with PET: Opportunities and limitations. Neuro Oncol 2011; 13: 806-819
  • 39 Stummer W, Reulen H-J, Meinel T. et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 2008; 62: 564-576
  • 40 Forsting M, Albert FK, Kunze S. et al. Extirpation of glioblastomas: MR and CT follow-up of residual tumor and regrowth patterns. AJNR Am J Neuroradiol 1993; 14: 77-87
  • 41 Grabowski MM, Recinos PF, Nowacki AS. et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 2014; v1-9
  • 42 Albert FK, Forsting M, Sartor K. et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 1994; 34: 45-60
  • 43 Forsyth PA, Petrov E, Mahallati H. et al. Prospective study of postoperative magnetic resonance imaging in patients with malignant gliomas. J Clin Oncol 1997; 15: 2076-2081
  • 44 Lescher S, Schniewindt S, Jurcoane A. et al. Time window for postoperative reactive enhancement after resection of brain tumors: less than 72 hours. Neurosurg Focus 2014; 37: E3
  • 45 Bette S, Gempt J, Huber T. et al. Patterns and time dependence of unspecific enhancement in postoperative magnetic resonance imaging after glioblastoma resection. World Neurosurg 2016; 90: 440-447
  • 46 Gempt J, Gerhardt J, Toth V. et al. Postoperative ischemic changes following brain metastasis resection as measured by diffusion-weighted magnetic resonance imaging. J Neurosurg 2013; 119: 1395-1400
  • 47 Kamp MA, Rapp M, Bühner J. et al. Early postoperative magnet resonance tomography after resection of cerebral metastases. Acta Neurochir (Wien) 2015; 157: 1573-1580
  • 48 Belhawi SMK, Hoefnagels FWA, Baaijen JC. et al. Early postoperative MRI overestimates residual tumour after resection of gliomas with no or minimal enhancement. Eur Radiol 2011; 21: 1526-1534
  • 49 Bette S, Kaesmacher J, Huber T. et al. Value of early postoperative FLAIR volume dynamic in glioma with no or minimal enhancement. World Neurosurg 2016; 91: 548-559.e1
  • 50 Bower M, Waxman J. Central nervoussystem cancers. Lect Notes Oncol 2011; 2011: 96-97
  • 51 Lin NU, Lee EQ, Aoyama H. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 2015; 16: e270-e278
  • 52 Wen PY, Macdonald DR, Reardon DA. et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol 2010; 28: 1963-1972
  • 53 Van den Bent MJ, Wefel JS, Schiff D. et al. Response assessment in neuro-oncology (a report of the RANO group): Assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 2011; 12: 583-593
  • 54 Macdonald DR, Cascino TL, Schold SCJ. et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8: 1277-1280
  • 55 Huang RY, Rahman R, Ballman KV. et al. The impact of T2/FLAIR evaluation per RANO criteria on response assessment of recurrent glioblastoma patients treated with bevacizumab. Clin Cancer Res 2016; 22: 575-581
  • 56 Galldiks N, Stoffels G, Ruge MI. et al. Role of O-(2-18F-Fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 2013; 54: 2046-2054
  • 57 Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol 2009; 6: 648-657
  • 58 Yang I, Huh NG, Smith ZA. et al. Distinguishing glioma recurrence from treatment effect after radiochemotherapy and immunotherapy. Neurosurg Clin N Am 2010; 21: 181-186
  • 59 Galldiks N, Langen K-J, Holy R. et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-Fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med 2012; 53: 1048-1057
  • 60 Rachinger W, Goetz C, Pöpperl G. et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511
  • 61 Galldiks N, Dunkl V, Stoffels G. et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur J Nucl Med Mol Imaging 2015; 42: 685-695
  • 62 Hutterer M, Nowosielski M, Putzer D. et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 2011; 52: 856-864
  • 63 Galldiks N, Rapp M, Stoffels G. et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-l-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging 2013; 40: 22-33
  • 64 Buckner JC, Shaw EG, Pugh SL. et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 2016; 374: 1344-1355
  • 65 Stupp R, Mason WP, van den Bent MJ. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987-996
  • 66 Shapiro WR, Green SB, Burger PC. et al. Randomized trial of three chemotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. J Neurosurg 1989; 71: 1-9
  • 67 Fairchild A, Weber DC, Bar-Deroma R. et al. Quality assurance in the EORTC 22033-26033/CE5 phase III randomized trial for low grade glioma: The digital individual case review. Radiother Oncol 2012; 103: 287-292
  • 68 Niyazi M, Brada M, Chalmers AJ. et al. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 2016; 118: 35-42
  • 69 Loureiro LVM, Victor EDAS, Callegaro-Filho D. et al. Minimizing the uncertainties regarding the effects of delaying radiotherapy for Glioblastoma: A systematic review and meta-analysis. Radiother Oncol 2016; 118: 1-8
  • 70 Adeberg S, Bostel T, Harrabi S. et al. Impact of delays in initiating postoperative chemoradiation while determining the MGMT promoter-methylation statuses of patients with primary glioblastoma. BMC Cancer 2015; 15: 558
  • 71 Götz I, Grosu AL. [(18)F]FET-PET Imaging for treatment and response monitoring of radiation therapy in malignant glioma patients – A Review. Front Oncol 2013; 3: 104
  • 72 Rieken S, Habermehl D, Giesel FL. et al. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol 2013; 109: 487-492
  • 73 Combs SE, Gutwein S, Thilmann C. et al. Reirradiation of recurrent WHO grade III astrocytomas using fractionated stereotactic radiotherapy (FSRT). Strahlenther Onkol 2005; 181: 768-773
  • 74 Combs SE, Gutwein S, Thilmann C. et al. Stereotactically guided fractionated re-irradiation in recurrent glioblastoma multiforme. J Neurooncol 2005; 74: 167-171
  • 75 Niyazi M, Siefert A, Schwarz SB. et al. Therapeutic options for recurrent malignant glioma. Radiother Oncol 2011; 98: 1-14
  • 76 Grosu AL, Weber WA, Franz M. et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 511-519
  • 77 Commins DL, Atkinson RD, Burnett ME. Review of meningioma histopathology. Neurosurg Focus 2007; 23: E3
  • 78 Farzin M, Molls M, Kampfer S. et al. Optic toxicity in radiation treatment of meningioma: a retrospective study in 213 patients. J. Neurooncol 2016; 127: 597-606
  • 79 Haghighi N, Seely A, Paul E. et al. Hypofractionated stereotactic radiotherapy for benign intracranial tumours of the cavernous sinus. J Clin Neurosci 2015; 22: 1450-1455
  • 80 Correa SFM, Marta GN, Teixeira MJ. Neurosymptomatic carvenous sinus meningioma: a 15-years experience with fractionated stereotactic radiotherapy and radiosurgery. Radiat Oncol 2014; 9: 27
  • 81 Kaley T, Barani I, Chamberlain M. et al. Historical benchmarks for medical therapy trials in surgery-and radiation-refractory meningioma: A RANO review. Neuro Oncol 2014; 16: 829-840
  • 82 Rachinger W, Stoecklein VM, Terpolilli NA. et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med 2015; 56: 347-353
  • 83 Afshar-Oromieh A, Giesel FL, Linhart HG. et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 2012; 39: 1409-1415
  • 84 Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int 2013; 4: 209-219
  • 85 Soffietti R, Cornu P, Delattre JY. et al. EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 2006; 13: 674-681
  • 86 Kakeda S, Korogi Y, Hiai Y. et al. Detection of brain metastasis at 3T: Comparison among SE, IR-FSE and 3D-GRE sequences. Eur Radiol 2007; 17: 2345-2351
  • 87 Haryu S, Saito A, Inoue M. et al. Brain metastasis from invasive thymoma mimicking intracerebral hemorrhage: case report. Neurol Med Chir (Tokyo) 2014; 54: 673-676
  • 88 Kurra V, Krajewski KM, Jagannathan J. et al. Typical and atypical metastatic sites of recurrent endometrial carcinoma. Cancer Imaging 2013; 13: 113-122
  • 89 Terada T, Maruo H. Unusual extrahepatic metastatic sites from hepatocellular carcinoma. Int J Clin Exp Pathol 2013; 6: 816-820
  • 90 Küker W, Nägele T, Korfel A. et al. Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients. J Neurooncol 2005; 72: 169-177
  • 91 Jack CR, Reese DF, Scheithauer BW. Radiographic findings in 32 cases of primary CNS lymphoma. AJR Am J Roentgenol 1986; 146: 271-276
  • 92 Shim WH, Kim HS, Choi C-G. et al. Comparison of apparent diffusion coefficient and intravoxel incoherent motion for differentiating among glioblastoma, metastasis, and lymphoma focusing on diffusion-related parameter. PLoS One 2015; 10: e0134761
  • 93 Specht HM, Kessel KA, Oechsner M. et al. HFSRT of the resection cavity in patients with brain metastases. Strahlenther Onkol 2016; 192: 368-376
  • 94 Bilger A, Milanovic D, Lorenz H. et al. Stereotactic fractionated radiotherapy of the resection cavity in patients with one to three brain metastases. Clin Neurol Neurosurg 2016; 142: 81-86
  • 95 Jarvis LA, Simmons NE, Bellerive M. et al. Tumor bed dynamics after surgical resection of brain metastases: Implications for postoperative radiosurgery. Int J Radiat Oncol Biol Phys 2012; 84: 943-948
  • 96 Weller M. Leitlinien für Diagnostik und Therapie in der Neurologie: Hirnmetastasen und Meningeosis neoplastica. DGN 2015; 1-42
  • 97 Walker AJ, Ruzevick J, Malayeri AA. et al. Postradiation imaging changes in the CNS: how can we differentiate between treatment effect and disease progression?. Futur Oncol 2014; 10: 1277-1297
  • 98 Specht HM, Combs SF. Stereotactic radiosurgery of brain metastases. J. Neurosurg. Sci 2016; 60
  • 99 Kocher M, Wittig A, Piroth MD. et al. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 2014; 190: 521-532
  • 100 Eisenhauer EA, Therasse P, Bogaerts J. et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 2009 45: 228-247
  • 101 Okada H, Weller M, Huang R. et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 2015; 16: e534-e542