Aktuelle Ernährungsmedizin 2018; 43(03): 179-200
DOI: 10.1055/s-0044-101812
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Präventives Potenzial von Ballaststoffen − Ernährungsphysiologie und Epidemiologie

Preventive Potential of Dietary Fiber − Nutritional Physiology and Epidemiology
Alexander Ströhle
,
Maike Wolters
,
Andreas Hahn

Verantwortlicher Herausgeber dieser Rubrik: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Prof. Dr. med. Christian Löser, Kassel.
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. Juni 2018 (online)

Ballaststoffe bilden eine heterogene Gruppe von Lebensmittelbestandteilen, die sich nach chemischen, physikochemischen sowie physiologischen Eigenschaften klassifizieren lassen. Dieser Beitrag zeigt auf, wie Ballaststoffe primär im Gastrointestinaltrakt wirken und über ihre Abbauprodukte sekundär den gesamten Organismus beeinflussen.

Abstract

Dietary fiber is a heterogeneous group of food ingredients that can be classified by chemical (saccharides versus non-saccharides), physicochemical (water soluble versus insoluble), and physiological (fermentable versus non-fermentable) properties. The gastrointestinal tract represents the main site of action of dietary fiber. Dietary fiber increases volume and viscosity of the chime, reduces enzymatic degradation and absorption of hydrolyzable polysaccharides and enhances peristalsis in the colon. Especially soluble fiber lowers the glycemic load and thus has a favorable effect on postprandial glucose and insulin metabolism. Additionally, they reduce the total and LDL serum concentration.

By its degradation products (short-chain fatty acids), dietary fiber influence secondarily the entire organism, such as the metabolism of liver, musculature and white adipose tissue. Because of their favorable cardiometabolic effects, dietary fiber is one of the most protective food constituents. High fiber intake is associated with a 30 % reduction in overweight and obesity risk and a 15 % reduction in risk for type 2 diabetes. Each increase in fiber intake of 10 g/day is associated with a type 2 diabetes risk reduction of 9 %. For cardiovascular events the risk reduction is 12 % per dose increase by 7 g/day.

For prevention, a fiber intake of at least 30 g/day is recommended. Suitable fiber sources are legumes, whole grains, vegetables and nuts. Drugs should always be taken time-shifted from a high-fiber meal.

Kernaussagen
  • Ballaststoffe stellen eine heterogene Gruppe von Lebensmittelbestandteilen pflanzlicher Herkunft dar, die sich nach chemischen (Saccharide vs. Nichtsaccharide), physikochemischen (löslich vs. unlöslich) und physiologischen (fermentierbar vs. nicht fermentierbar) Eigenschaften klassifizieren lassen.

  • Ballaststoffe wirken primär lokal im Gastrointestinaltrakt. Dort erhöhen sie u. a. Volumen und Viskosität des Chymus, verringern den enzymatischen Abbau und die Absorption hydrolysierbarer Polysaccharide und steigern die Peristaltik im Kolon.

  • Ballaststoffe, insbesondere lösliche, senken die glykämische Last und wirken so günstig auf den postprandialen Glukose- und Insulinstoffwechsel.

  • Weiterhin reduzieren sie die Serumkonzentration an Gesamt- und LDL-Cholesterol.

  • Über ihre Abbauprodukte (kurzkettige Fettsäuren) beeinflussen sie sekundär den gesamten Organismus, u. a. den Stoffwechsel von Leber, Muskulatur und weißem Fettgewebe.

  • Aufgrund ihrer günstigen kardiometabolischen Effekte zählen Ballaststoffe zu den protektiven Lebensmittelbestandteilen. Eine hohe Ballaststoffzufuhr steht mit einem um 30 % reduzierten Risiko für Übergewicht bzw. Adipositas und einem um 15 % reduzierten Risiko für Typ-2-Diabetes in Zusammenhang. Für jede Steigerung der Ballaststoffzufuhr um 10 g/Tag beträgt die Risikosenkung für Typ-2-Diabetes 9 %.

  • Für kardiovaskuläre Ereignisse liegt die Risikoreduktion bei 12 % pro Verzehrsteigerung um 7 g/Tag.

  • Zur Prävention wird eine Ballaststoffaufnahme von mindestens 30 g/Tag empfohlen.

  • Geeignete Ballaststoffquellen sind Hülsenfrüchte, Vollkornprodukte, Gemüse und Nüsse.

  • Arzneimittel sollten grundsätzlich zeitlich versetzt von einer ballaststoffreichen Mahlzeit eingenommen werden.

 
  • Literatur

  • 1 Rubner M. Unsere Nahrungsmittel und die Ernährungskunde. Stuttgart: Moritz; 1904
  • 2 Burkitt DP, Trowell HC. Dietary fibre and western diseases. Ir Med J 1977; 70: 272-277
  • 3 Burkitt DP. Some diseases characteristic of modern Western civilization. Br Med J 1973; 1: 274-278
  • 4 Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährung (SGE), Schweizerische Vereinigung für Ernährung (SVE). Referenzwerte für die Nährstoffzufuhr. 2. Aufl. Bonn: Umschau; 2015
  • 5 Institiute of Medicine of the National Academy (Food and Nutrition Board). Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington D. C.: National Academies Press; 2002
  • 6 Howlett JF, Betteridge VA, Champ M. et al. The definition of dietary fiber – discussions at the Ninth Vahouny Fiber Symposium: building scientific agreement. Food Nutr Res 2010; 54
  • 7 Fuller S, Beck E, Salman H. et al. New Horizons for the Study of Dietary Fiber and Health: A Review. Plant Foods Hum Nutr 2016; 71: 1-12
  • 8 Ströhle A, Wolters M, Hahn A. Gesundheitliche Effekte von Ballaststoffen. Ein Update. Teil 1: Von der Struktur zur Funktion. Dtsch Apothek Z 2012; 152: 3780-3788
  • 9 Mudgil D, Barak S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol 2013; 61: 1-6
  • 10 Trepel F. Dietary fibre: more than a matter of dietetics. I. Compounds, properties, physiological effects. Wien Klin Wochenschr 2004; 116: 465-476
  • 11 Slavin JL. Position of the American Dietetic Association: Health implications of dietary fiber. J Am Diet Assoc 2008; 108: 1716-1731
  • 12 N.N. Fiber. In: Gropper SS, Smith JL, Groff JL. Advanced Nutrition And Human Metabolism. 5. Aufl. Belmont (USA): Wadsworth; 2009: 107-123
  • 13 Bird AR, Conlon MA, Christophersen CT. et al. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef Microbes 2010; 1: 423-431
  • 14 Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001; 81: 1031-1064
  • 15 Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?. Nutr Res Rev 2010; 23: 65-134
  • 16 Koh A, De Vadder F, Kovatcheva-Datchary P. et al. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016; 165: 1332-1345
  • 17 Natarajan N, Pluznick JL. From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. Am J Physiol Cell Physiol 2014; 307: C979-985
  • 18 Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11 577-591
  • 19 Lu ZX, Walker KZ, Muir JG. et al. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am J Clin Nutr 2000; 71: 1123-1128
  • 20 Greger JL. Nondigestible carbohydrates and mineral bioavailability. J Nutr 1999; 129 (Suppl. 07) 1434S-1435S
  • 21 Gunness P, Gidley MJ. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct 2010; 1: 149-155
  • 22 Brown L, Rosner B, Willett WW. et al. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 1999; 69: 30-42
  • 23 Surampudi P, Enkhmaa B, Anuurad E. et al. Lipid Lowering with Soluble Dietary Fiber. Curr Atheroscler Rep 2016; 18: 75
  • 24 Wisker E, Becker HG, Steller W. et al. Ballaststoffe in unserer Kost – Ergebnisse einer Gemeinschaftsuntersuchung. AID-Verbraucherdienst 1984; 9. Zitiert nach Kasper H. Ernährungsmedizin und Diätetik. 11. Aufl. München: Urban & Fischer; 2009
  • 25 Shukla S, Shukla A, Mehboob S. et al. Meta-analysis: the effects of gut flora modulation using prebiotics, probiotics and synbiotics on minimal hepatic encephalopathy. Aliment Pharmacol Ther 2011; 33: 662-671
  • 26 Ströhle A, Wolters M, Hahn A. Gesundheitliche Effekte von Ballaststoffen. Ein Update. Teil 2: Systemische Effekte und Präventionspotenzial. Dtsch Apothek Z 2012; 152: 3000-3011
  • 27 Hauner H. Zusammenfassung der Ergebnisse der Leitlinie zur Kohlenhydratzufuhr. In: Deutsche Gesellschaft für Ernährung, Hrsg. Evidenzbasierte Leitlinie. Kohlenhydratzufuhr und Prävention ausgewählter ernährungsmitbedingter Krankheiten. 2011: 158-161 Im Internet: http://www.dge.de/wissenschaft/leitlinien/leitlinie-kohlenhydrate (Stand: 05.02.2018)
  • 28 Anderson JW, Baird P, Davis Jr RH. et al. Health benefits of dietary fiber. Nutr Rev 2009; 67: 188-205
  • 29 Liu S, Willett WC, Manson JE. et al. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 2003; 78: 920-927
  • 30 Du H, van der A DL, Boshuizen HC. et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 2010; 91: 329-336
  • 31 Eiben G, Lissner L. Health Hunters – an intervention to prevent overweight and obesity in young high-risk women. Int J Obes 2006; 30: 691-696
  • 32 Howarth NC, Murphy SP, Wilkens LR. et al. Dietary energy density is associated with overweight status among 5 ethnic groups in the multiethnic cohort study. J Nutr 2006; 136: 2243-2248
  • 33 Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev 2001; 59: 129-139
  • 34 Wanders AJ, van den Borne JJ, de Graaf C. et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 2011; 12: 724-739
  • 35 Hill JO, Wyatt HR, Reed GW. et al. Obesity and the environment: where do we go from here?. Science 2003; 299: 853-855
  • 36 Sleeth ML, Thompson EL, Ford HE. et al. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 2010; 23: 135-145
  • 37 Trowell HC. Dietary-fiber hypothesis of the etiology of diabetes mellitus. Diabetes 1975; 24: 762-765
  • 38 Gross LS, Li L, Ford ES. et al. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr 2004; 79: 774-779
  • 39 InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015; 58: 1394-1408
  • 40 Sánchez D, Miguel M, Aleixandre A. Dietary fiber, gut peptides, and adipocytokines. J Med Food 2012; 15: 223-230
  • 41 Weickert MO, Pfeiffer AF. Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 2008; 138: 439-442
  • 42 Thomas T, Pfeiffer AF. Foods for the prevention of diabetes: how do they work?. Diabetes Metab Res Rev 2012; 28: 25-49
  • 43 Weickert MO, Roden M, Isken F. et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr 2011; 94: 459-471
  • 44 Ströhle A, Hahn A, Wolters M. Ballaststoffe in Prävention und Therapie des Diabetes mellitus Typ 2. Ernährung im Fokus 2015; 15: 338-345
  • 45 Matthaei S, Bierwirthj R, Fritsche A. et al. Behandlung des Diabetes mellitus Typ 2. Diabetologie 2011; 6: S131-S136
  • 46 ADA (American Diabetic Association). Standards of Medical Care in Diabetes – 2012. Diabetes Care 2012; 35: 11-63
  • 47 Russell WR, Baka A, Björck I. et al. Impact of diet composition on blood glucose regulation. Crit Rev Food Sci Nutr 2016; 56: 541-590
  • 48 Evert AB, Boucher JL, Cypress M. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014; 37 (Suppl. 01) S120-143
  • 49 Franz MJ, Powers MA, Leontos C. et al. The evidence for medical nutrition therapy for type 1 and type 2 diabetes in adults. J Am Diet Assoc 2010; 110: 1852-1889
  • 50 Wheeler ML, Dunbar SA, Jaacks LM. et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care 2012; 35: 434-445
  • 51 Jenkins DJ, Kendall CW, Augustin LS. et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 2012; 172: 1653-1660
  • 52 Post RE, Mainous 3rd AG, King DE. et al. Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med 2012; 25: 16-23
  • 53 Silva FM, Kramer CK, de Almeida JC. et al. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev 2013; 71: 790-801
  • 54 Burger KN, Beulens JW, van der Schouw YT. et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS One 2012; 7: e43127
  • 55 He M, van Dam RM, Rimm E. et al. Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation 2010; 121: 2162-2168
  • 56 Mente A, de Koning L, Shannon HS. et al. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med 2009; 169: 659-669
  • 57 Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch Cardiovasc Dis 2016; 109: 39-54
  • 58 Threapleton DE, Greenwood DC, Evans CE. et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 2013; 347: f6879
  • 59 Threapleton DE, Greenwood DC, Evans CE. et al. Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis. Stroke 2013; 44: 1360-1368
  • 60 Hartley L, May MD, Loveman E. et al. Dietary fibre for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2016 01: CD011472
  • 61 Wang F, Zheng J, Yang B. et al. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2015; 4: e002408
  • 62 Evans CE, Greenwood DC, Threapleton DE. et al. Effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. J Hypertens 2015; 33: 897-911
  • 63 Yokoyama Y, Nishimura K, Barnard ND. et al. Vegetarian diets and blood pressure: a metaanalysis. JAMA Intern Med 2014; 174: 577-587
  • 64 Ceriello A, Colagiuri S. International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet Med 2008; 25: 1151-1156
  • 65 Ben Q, Sun Y, Chai R. et al. Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology 2014; 146: 689-699.e6
  • 66 Aune D, Chan DS, Lau R. et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 2011; 343: d6617
  • 67 Murphy N, Norat T, Ferrari P. et al. Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 2012; 7: e39361
  • 68 Micha R, Shulkin ML, Peñalvo JL. et al. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017; 12: e0175149