Subscribe to RSS
DOI: 10.1055/s-0044-1786500
2D Conductive Metal–Organic Frameworks for Electrochemical Energy Application
Abstract
Two-dimensional conductive metal–organic frameworks (2D c-MOFs) have attracted research attention, benefitting from their unique properties such as superior electronic conductivity, designable topologies, and well-defined catalytic/redox-active sites. These advantages enable 2D c-MOFs as promising candidates in electrochemical energy applications, including supercapacitors, batteries and electrocatalysts. This mini-review mainly highlights recent advancements of 2D c-MOFs in the utilization for electrochemical energy storage, as well as the forward-looking perspective on the future prospects of 2D c-MOFs in the field of electrochemical energy.
Table of content:
1 Introduction
2 Design Principles of 2D c-MOFs
3 Synthesis of 2D c-MOFs
4 2D c-MOFs for Electrochemical Energy Storage
4.1 Supercapacitors
4.2 Metallic Batteries
4.2.1 Lithium-Ion Batteries
4.2.2 Sodium-Ion Batteries
4.2.3 Zinc-Ion Batteries
4.2.4 Sodium–Iodine Batteries
4.2.5 Lithium–Sulfur Batteries
4.2.6 Potassium-Ion Batteries
5 2D c-MOFs for Electrochemical Energy Conversion
6 Conclusions and Outlook
Key words
2D conductive metal–organic frameworks - energy storage - capacitors - batteries - electrocatalystsPublication History
Received: 28 December 2023
Accepted after revision: 20 March 2024
Article published online:
17 May 2024
© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Chakraborty G, Park IH, Medishetty R, Vittal JJ. Chem. Rev. 2021; 121: 3751
- 2 Xie LS, Skorupskii G, Dincă M. Chem. Rev. 2020; 120: 8536
- 3 Yu M, Dong R, Feng X. J. Am. Chem. Soc. 2020; 142: 12903
- 4 Liu J, Song X, Zhang T, Liu S, Wen H, Chen L. Angew. Chem. Int. Ed. 2021; 60: 5612
- 5 Ko M, Mendecki L, Mirica KA. Chem. Commun. 2018; 54: 7873
- 6 Jiang J, Furukawa H, Zhang Y-B, Yaghi OM. J. Am. Chem. Soc. 2016; 138: 10244
- 7 Murray LJ, Dincă M, Long JR. Chem. Soc. Rev. 2009; 38: 1294
- 8 Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, Benedetti FM, Wu AX, Chi WS, Smith ZP. Chem. Rev. 2020; 120: 8161
- 9 Peng Y, Li Y, Ban Y, Yang W. Angew. Chem. Int. Ed. 2017; 56: 9757
- 10 Su X, Zhong Z, Yan X, Zhang T, Wang C, Wang YX, Xu G, Chen L. Angew. Chem. Int. Ed. 2023; 62: e202302645
- 11 Chen P, Su X, Wang C, Zhang G, Zhang T, Xu G, Chen L. Angew. Chem. Int. Ed. 2023; 62,: e202306224
- 12 Yao M, Xiu J, Huang Q, Li W, Wu W, Wu A, Cao L, Deng W, Wang G, Xu G. Angew. Chem. Int. Ed. 2019; 58: 14915
- 13 Yao M, Lv X, Fu Z, Li W, Deng W, Wu G, Xu G. Angew. Chem. Int. Ed. 2017; 56: 16510
- 14 Lin Y, Li WH, Wen Y, Wang GE, Ye XL, Xu G. Angew. Chem. Int. Ed. 2021; 60: 25758
- 15 Yao M, Li W, Xu G. Coord. Chem. Rev. 2021; 426,: 213479
- 16 Khan U, Nairan A, Gao J, Zhang Q. Small Struct. 2022; 4: 2200109
- 17 Li C, Zhang H, Liu M, Lang F, Pang J, Bu X. Ind. Chem. Mater. 2023; 1: 9
- 18 Zhong H, Wang M, Chen G, Dong R, Feng X. ACS Nano 2022; 16: 1759
- 19 Lu Y, Zhong H, Li J, Dominic AM, Hu Y, Gao Z, Jiao Y, Wu M, Qi H, Huang C, Wayment LJ, Kaiser U, Spiecker E, Weidinger IM, Zhang W, Feng X, Dong R. Angew. Chem. Int. Ed. 2022; 61: e202208163
- 20 Li J, Lin Q, Li N, Li Z, Tan G, Liu S, Chung L, Liao W, Yu L, He J. Adv. Funct. Mater. 2022; 33: 2210717
- 21 Song X, Liu J, Zhang T, Chen L. Sci. China Chem. 2020; 63: 1391
- 22 Song X, Wang X, Li Y, Zheng C, Zhang B, Di CA, Li F, Jin C, Mi W, Chen L, Hu W. Angew. Chem. Int. Ed. 2020; 59: 1118
- 23 Yan X, Su X, Chen J, Jin C, Chen L. Angew. Chem. Int. Ed. 2023; 62,: e202305408
- 24 Yang L, He X, Dincă M. J. Am. Chem. Soc. 2019; 141: 10475
- 25 Ha D-G, Wan R, Kim CA, Lin T-A, Yang L, Van Voorhis T, Baldo MA, Dincă M. Nat. Mater. 2022; 21: 1275
- 26 Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja SK, Vikrant K, Kim K-H, Tiwari UK, Deep A. Coord. Chem. Rev. 2019; 393: 48
- 27 Wang F, Liu Z, Yang C, Zhong H, Nam G, Zhang P, Dong R, Wu Y, Cho J, Zhang J, Feng X. Adv. Mater. 2020; 32: e1905361
- 28 Yuan M, Wang R, Fu W, Lin L, Sun Z, Long X, Zhang S, Nan C, Sun G, Li H, Ma S. ACS Appl. Mater. Interfaces 2019; 11: 11403
- 29 Gu S, Xu S, Song X, Li H, Wang Y, Zhou G, Wang N, Chang H. ACS Appl. Mater. Interfaces 2022; 14: 50815
- 30 Ren Y, Zhai Q, Wang B, Hu L, Ma Y, Dai Y, Tang S, Meng X. Chem. Eng. J. 2022; 439: 135535
- 31 Chang Z, Zhu M, Sun Y, He F, Li Y, Ye C, Jin Y, Li Z, Xu W. Adv. Funct. Mater. 2023; 33: 2301513
- 32 Chen H, Liu X, Li H, Peng P, Zang S. Nano Res. 2022; 15: 6208
- 33 Liu J, Zhou Y, Xie Z, Li Y, Liu Y, Sun J, Ma Y, Terasaki O, Chen L. Angew. Chem. Int. Ed. 2020; 59: 1081
- 34 Yang B, Li B, Xiang Z. Nano Res. 2022; 16: 1338
- 35 Meng Z, Mirica KA. Nano Res. 2020; 14: 369
- 36 Zhao Q, Li SH, Chai RL, Ren X, Zhang C. ACS Appl. Mater. Interfaces 2020; 12: 7504
- 37 Cui Y, Yan J, Chen Z, Zhang J, Zou Y, Sun Y, Xu W, Zhu D. Adv. Sci. 2019; 6: 1802235
- 38 Huang X, Yao H, Cui Y, Hao W, Zhu J, Xu W, Zhu D. ACS Appl. Mater. Interfaces 2017; 9: 40752
- 39 Hinckley AC, Park J, Gomes J, Carlson E, Bao Z. J. Am. Chem. Soc. 2020; 142: 11123
- 40 Dou JH, Sun L, Ge Y, Li W, Hendon CH, Li J, Gul S, Yano J, Stach EA, Dincă M. J. Am. Chem. Soc. 2017; 139: 13608
- 41 Chen T, Dou J, Yang L, Sun C, Libretto NJ, Skorupskii G, Miller JT, Dincă M. J. Am. Chem. Soc. 2020; 142: 12367
- 42 Day RW, Bediako DK, Rezaee M, Parent LR, Skorupskii G, Arguilla MQ, Hendon CH, Stassen I, Gianneschi NC, Kim P, Dincă M. ACS Cent. Sci. 2019; 5: 1959
- 43 Eagleton AM, Ko M, Stolz RM, Vereshchuk N, Meng Z, Mendecki L, Levenson AM, Huang C, MacVeagh KC, Mahdavi-Shakib A, Mahle JJ, Peterson GW, Frederick BG, Mirica KA. J. Am. Chem. Soc. 2022; 144: 23297
- 44 Meng Z, Aykanat A, Mirica KA. J. Am. Chem. Soc. 2018; 141: 2046
- 45 Meng Z, Luo J, Li W, Mirica KA. J. Am. Chem. Soc. 2020; 142: 21656
- 46 Chen G, Li Z, Huang Z, Lu H, Long G, Lezama Pacheco JS, Tok JB, Gao TZ, Lei Y, Zhou J, Bao Z. ACS Nano 2023; 17: 9611
- 47 Sporrer L, Zhou G, Wang M, Balos V, Revuelta S, Jastrzembski K, Löffler M, Petkov P, Heine T, Kuc A, Cánovas E, Huang Z, Feng X, Dong R. Angew. Chem. Int. Ed. 2023; 62: e202300186
- 48 Qi M, Zhou Y, Lv Y, Chen W, Su X, Zhang T, Xing G, Xu G, Terasaki O, Chen L. J. Am. Chem. Soc. 2023; 145: 2739
- 49 Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Angew. Chem. Int. Ed. 2024; e202401679
- 50 Wang Z, Wang G, Qi H, Wang M, Wang M, Park S, Wang H, Yu M, Kaiser U, Fery A, Zhou S, Dong R, Feng X. Chem. Sci. 2020; 11: 7665
- 51 Lukatskaya MR, Dunn B, Gogotsi Y. Nat. Commun. 2016; 7: 12647
- 52 Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M. Nat. Mater. 2017; 16: 220
- 53 Feng D, Lei T, Lukatskaya MR, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko AA, Kulkarni A, Xiao J, Fredrickson K, Tok JB, Zou X, Cui Y, Bao Z. Nat. Energy 2018; 3: 30
- 54 Zhao J, Zhang T, Ren J, Zhao Z, Su X, Chen W, Chen L. Chem. Commun. 2023; 59: 2978
- 55 Li W, Ding K, Tian H, Yao M, Nath B, Deng W, Wang Y, Xu G. Adv. Funct. Mater. 2017; 27: 1702067
- 56 Wang M, Shi H, Zhang P, Liao Z, Wang M, Zhong H, Schwotzer F, Nia AS, Zschech E, Zhou S, Kaskel S, Dong R, Feng X. Adv. Funct. Mater. 2020; 30: 2002664
- 57 Lukatskaya MR, Feng D, Bak SM, To JWF, Yang XQ, Cui Y, Feldblyum JI, Bao Z. ACS Nano 2020; 14: 15919
- 58 Bi S, Banda H, Chen M, Niu L, Chen M, Wu T, Wang J, Wang R, Feng J, Chen T, Dincă M, Kornyshev AA, Feng G. Nat. Mater. 2020; 19: 552
- 59 Xu D, Liang M, Qi S, Sun W, Lv L-P, Du F-H, Wang B, Chen S, Wang Y, Yu Y. ACS Nano 2020; 15: 47
- 60 Wada K, Sakaushi K, Sasaki S, Nishihara H. Angew. Chem. Int. Ed. 2018; 57: 8886
- 61 Wu Z, Adekoya D, Huang X, Kiefel MJ, Xie J, Xu W, Zhang Q, Zhu D, Zhang S. ACS Nano 2020; 14: 12016
- 62 Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang XQ, Hu E, Cao Y, Sun J, Xu Y, Chen L. Angew. Chem. Int. Ed. 2020; 59: 5273
- 63 Sun X, Yan X, Song K, Zhang T, Yang Z, Su X, Chen W, Chen L. Chin. J. Chem. 2023; 41: 1691
- 64 Yin J, Li N, Liu M, Li Z, Wang X, Cheng M, Zhong M, Li W, Xu Y, Bu XH. Adv. Funct. Mater. 2023; 33: 2211950
- 65 Yan J, Cui Y, Xie M, Yang GZ, Bin DS, Li D. Angew. Chem. Int. Ed. 2021; 60: 24467
- 66 Islam MS, Fisher CA. Chem. Soc. Rev. 2014; 43: 185
- 67 Usiskin R, Lu Y, Popovic J, Law M, Balaya P, Hu Y-S, Maier J. Nat. Rev. Mater. 2021; 6: 1020
- 68 Park J, Lee M, Feng D, Huang Z, Hinckley AC, Yakovenko A, Zou X, Cui Y, Bao Z. J. Am. Chem. Soc. 2018; 140: 10315
- 69 Chen Y, Zhu Q, Fan K, Gu Y, Sun M, Li Z, Zhang C, Wu Y, Wang Q, Xu S, Ma J, Wang C, Hu W. Angew. Chem. Int. Ed. 2021; 60: 18769
- 70 Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. Nat. Energy 2016; 1: 16119
- 71 Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura JA, Xu K, Wang C. Nat. Mater. 2018; 17: 543
- 72 Nam KW, Park SS, Dos Reis R, Dravid VP, Kim H, Mirkin CA, Stoddart JF. Nat. Commun. 2019; 10: 4948
- 73 Wang Y, Song J, Wong W. Angew. Chem. Int. Ed. 2023; 62: e202218343
- 74 Liu J, Zhou Y, Xing G, Qi M, Tang Z, Terasaki O, Chen L. Adv. Funct. Mater. 2024; 2312636
- 75 Gong D, Wang B, Zhu J, Podila R, Rao AM, Yu X, Xu Z, Lu B. Adv. Energy Mater. 2017; 7: 1601885
- 76 Tian H, Shao H, Chen Y, Fang X, Xiong P, Sun B, Notten PHL, Wang G. Nano Energy 2019; 57: 692
- 77 Yin Y, Xin S, Guo Y, Wan L. Angew. Chem. Int. Ed. 2013; 52: 13186
- 78 Fang R, Zhao S, Sun Z, Wang D, Cheng H, Li F. Adv. Mater. 2017; 29: 1606823
- 79 Gu S, Xu S, Song X, Li H, Wang Y, Zhou G, Wang N, Chang H. ACS Appl. Mater. Interfaces 2022; 14: 50815
- 80 Tian M, Pei F, Yao M, Fu Z, Lin L, Wu G, Xu G, Kitagawa H, Fang X. Energy Storage Mater. 2019; 21: 14
- 81 Wang X, Zhao C, Liu B, Zhao S, Zhang Y, Qian L, Chen Z, Wang J, Wang X, Chen Z. Adv. Energy Mater. 2022; 12: 2201960
- 82 Zang Y, Pei F, Huang J, Fu Z, Xu G, Fang X. Adv. Energy Mater. 2018; 8: 1802052
- 83 Cai D, Lu M, Li L, Cao J, Chen D, Tu H, Li J, Han W. Small 2019; 15: e1902605
- 84 Luo XX, Li WH, Liang HJ, Zhang HX, Du KD, Wang XT, Liu XF, Zhang JP, Wu XL. Angew. Chem. Int. Ed. 2022; 61.: e202117661
- 85 Hosaka T, Kubota K, Hameed AS, Komaba S. Chem. Rev. 2020; 120: 6358
- 86 Lu X, Zhang D, Zhong J, Wang L, Jiang L, Liu Q, Shao G, Fu D, Teng J, Yang W. Chem. Eng. J. 2022; 432: 134416
- 87 Wang J, Jia H, Liu Z, Yu J, Cheng L, Wang HG, Cui F, Zhu G. Adv. Mater. 2024; 36: 2305605
- 88 Yang M, Zeng X, Xie M, Wang Y, Xiao J-M, Chen R-H, Yi Z-J, Huang Y-F, Bin D-S, Li D. J. Am. Chem. Soc. 2024;
- 89 Li JM, Lin QC, Li N, Li ZH, Tan G, Liu SJ, Chung LH, Liao WM, Yu L, He J. Adv. Funct. Mater. 2023; 33: 2210717
- 90 Zhang M, Zheng B-H, Xu J, Pan N, Yu J, Chen M, Cao H. Chem. Commun. 2018; 54: 13579
- 91 Li J, Liu P, Mao J, Yan J, Song W. J. Mater. Chem. A. 2021; 9: 11248
- 92 Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P. J. Mater. Chem. A. 2018; 6: 1188
- 93 Park J, Chen Z, Flores RA, Wallnerström G, Kulkarni A, Nørskov JK, Jaramillo TF, Bao Z. ACS Appl. Mater. Interfaces 2020; 12: 39074
- 94 Zhao Q, Jiang J, Zhao W, Li S-H, Mi W, Zhang C. J. Phys. Chem. C 2021; 125: 12690
- 95 Miner EM, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Nat. Commun. 2016; 7: 10942
- 96 Qiu X-F, Zhu H-L, Huang J-R, Liao P-Q, Chen X-M. J. Am. Chem. Soc. 2021; 143: 7242
- 97 Liu J, Yang D, Zhou Y, Zhang G, Xing G, Liu Y, Ma Y, Terasaki O, Yang S, Chen L. Angew. Chem. Int. Ed. 2021; 60: 14473
- 98 Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X. Angew. Chem. Int. Ed. 2015; 54: 12058
- 99 Zhong H, Ly KH, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Buchner B, Weidinger IM, Kaskel S, Liu P, Chen M, Dong R, Feng X. Angew. Chem. Int. Ed. 2019; 58: 10677
- 100 Zhong H, Ghorbani-Asl M, Ly KH, Zhang J, Ge J, Wang M, Liao Z, Makarov D, Zschech E, Brunner E, Weidinger IM, Zhang J, Krasheninnikov AV, Kaskel S, Dong R, Feng X. Nat. Commun. 2020; 11: 1409