CC BY 4.0 · Pharmaceutical Fronts 2024; 06(02): e101-e118
DOI: 10.1055/s-0044-1786681
Review Article

Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy

Ziyi Mo
1   Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu, People's Republic of China
,
Jiao He
1   Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu, People's Republic of China
,
Man Li
1   Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu, People's Republic of China
,
Rong Guo
2   Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
,
Qin He
1   Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu, People's Republic of China
› Author Affiliations
Funding The work was supported by the National Natural Science Foundation (Grant No. 82173771) and the Key Project of Applied Basic Research in Sichuan province (Grant No. 22YYJC1231).

Abstract

Cancer is one of the most fatal diseases that attract numerous efforts and attention from researchers. Among plentiful therapeutic agents, chemotherapy is frequently used in treating virulent tumors, and its insistent administration is useful in the ablation of cancers; however, it also produces side effects. Biomimetic drug delivery systems (BDDSs) provide an alternative route for antitumor therapy. Their endogenous substances may be extracellular vesicles, living cells, cell membranes, etc., which optimize single-agent chemotherapy. They “upgrade” traditional drug delivery platforms by combining the original drug with itself, disguised as a Trojan Horse, to trick the immune system or tumor tissues to achieve higher targeting and lower immunogenicity. Herein, we review three BDDS strategies being used recently in antitumor drug development and their advances, aiming at providing general guidelines and opportunities in this field in the future.



Publication History

Received: 29 August 2023

Accepted: 07 April 2024

Article published online:
22 May 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (03) 209-249
  • 2 Pusuluri A, Wu D, Mitragotri S. Immunological consequences of chemotherapy: single drugs, combination therapies and nanoparticle-based treatments. J Control Release 2019; 305: 130-154
  • 3 Ma Q, Cao J, Gao Y. et al. Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale 2020; 12 (29) 15512-15527
  • 4 Ho YJ, Chiang YJ, Kang ST, Fan CH, Yeh CK. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system. J Control Release 2018; 278: 100-109
  • 5 Wu HH, Zhou Y, Tabata Y, Gao JQ. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release 2019; 294: 102-113
  • 6 Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: a multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater 2020; 112: 1-13
  • 7 Chi J, Ma Q, Shen Z. et al. Targeted nanocarriers based on iodinated-cyanine dyes as immunomodulators for synergistic phototherapy. Nanoscale 2020; 12 (20) 11008-11025
  • 8 Guan YH, Wang N, Deng ZW, Chen XG, Liu Y. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 2022; 282: 121434
  • 9 Bush LM, Healy CP, Javdan SB, Emmons JC, Deans TL. Biological cells as therapeutic delivery vehicles. Trends Pharmacol Sci 2021; 42 (02) 106-118
  • 10 Elsharkasy OM, Nordin JZ, Hagey DW. et al. Extracellular vesicles as drug delivery systems: why and how?. Adv Drug Deliv Rev 2020; 159: 332-343
  • 11 Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 2021; 16 (07) 748-759
  • 12 Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022; 12 (11) 2634-2648
  • 13 Zhang X, Li N, Zhang S. et al. Emerging carrier-free nanosystems based on molecular self-assembly of pure drugs for cancer therapy. Med Res Rev 2020; 40 (05) 1754-1775
  • 14 Ayer M, Klok HA. Cell-mediated delivery of synthetic nano- and microparticles. J Control Release 2017; 259: 92-104
  • 15 Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol 2023; 20 (01) 33-48
  • 16 Sun S, Yang Y, Gao Z. et al. endogenous stimuli-responsive autonomous separation of dual-targeting DNA guided missile from nanospacecraft for intelligent targeted cancer therapy. ACS Appl Mater Interfaces 2022; 14 (40) 45201-45216
  • 17 Théry C, Witwer KW, Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7 (01) 1535750
  • 18 Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc 2019; 14 (04) 1027-1053
  • 19 van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 2014; 195: 72-85
  • 20 Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano 2018; 12 (07) 6830-6842
  • 21 Schulz-Siegmund M, Aigner A. Nucleic acid delivery with extracellular vesicles. Adv Drug Deliv Rev 2021; 173: 89-111
  • 22 Ou YH, Liang J, Czarny B. et al. Extracellular vesicle (EV) biohybrid systems for cancer therapy: recent advances and future perspectives. Semin Cancer Biol 2021; 74: 45-61
  • 23 Richter M, Vader P, Fuhrmann G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev 2021; 173: 416-426
  • 24 Sharma S, Masud MK, Kaneti YV. et al. Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small 2021; 17 (42) e2102220
  • 25 Roerig J, Schulz-Siegmund M. Standardization approaches for extracellular vesicle loading with oligonucleotides and biologics. Small 2023; 19 (40) e2301763
  • 26 Liu YR, Cheng YQ, Wang SB. et al. Therapeutic effects and perspective of stem cell extracellular vesicles in aging and cancer. J Cell Physiol 2021; 236 (07) 4783-4796
  • 27 Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol 2021; 14 (01) 195
  • 28 Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther 2018; 9 (01) 63
  • 29 Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9: 12
  • 30 Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 2015; 23 (05) 812-823
  • 31 Xu F, Fei Z, Dai H. et al. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment. Adv Mater 2022; 34 (01) e2106265
  • 32 Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015; 40: 82-88
  • 33 Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther 2021; 6 (01) 109
  • 34 Sohrabi B, Dayeri B, Zahedi E. et al. Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29 (8–9): 1105-1116
  • 35 Sun Y, Liu G, Zhang K, Cao Q, Liu T, Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res Ther 2021; 12 (01) 561
  • 36 Crivelli B, Chlapanidas T, Perteghella S. et al; Italian Mesenchymal Stem Cell Group (GISM). Mesenchymal stem/stromal cell extracellular vesicles: from active principle to next generation drug delivery system. J Control Release 2017; 262: 104-117
  • 37 Xunian Z, Kalluri R. Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci 2020; 111 (09) 3100-3110
  • 38 Jahangiri B, Khalaj-Kondori M, Asadollahi E, Purrafee Dizaj L, Sadeghizadeh M. MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm 2022; 627: 122214
  • 39 Yao X, Mao Y, Wu D. et al. Exosomal circ_0030167 derived from BM-MSCs inhibits the invasion, migration, proliferation and stemness of pancreatic cancer cells by sponging miR-338-5p and targeting the Wif1/Wnt8/β-catenin axis. Cancer Lett 2021; 512: 38-50
  • 40 Pascucci L, Coccè V, Bonomi A. et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 2014; 192: 262-270
  • 41 Pinto A, Marangon I, Méreaux J. et al. Immune reprogramming precision photodynamic therapy of peritoneal metastasis by scalable stem-cell-derived extracellular vesicles. ACS Nano 2021; 15 (02) 3251-3263
  • 42 Luo T, Liu Q, Tan A. et al. Mesenchymal stem cell-secreted exosome promotes chemoresistance in breast cancer via enhancing miR-21-5p-mediated S100A6 expression. Mol Ther Oncolytics 2020; 19: 283-293
  • 43 Zhu S, Yang N, Wu J. et al. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res 2020; 159: 104980
  • 44 Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The cell surface phenotype of human dendritic cells. Semin Cell Dev Biol 2019; 86: 3-14
  • 45 Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res 2016; 22 (08) 1897-1906
  • 46 Macri C, Pang ES, Patton T, O'Keeffe M. Dendritic cell subsets. Semin Cell Dev Biol 2018; 84: 11-21
  • 47 Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol 2017; 17 (01) 30-48
  • 48 Li J, Li J, Peng Y, Du Y, Yang Z, Qi X. Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies. J Control Release 2023; 353: 423-433
  • 49 Näslund TI, Gehrmann U, Qazi KR, Karlsson MC, Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J Immunol 2013; 190 (06) 2712-2719
  • 50 Xiong X, Ke X, Wang L. et al. Neoantigen-based cancer vaccination using chimeric RNA-loaded dendritic cell-derived extracellular vesicles. J Extracell Vesicles 2022; 11 (08) e12243
  • 51 Esser J, Gehrmann U, D'Alexandri FL. et al. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol 2010; 126 (05) 1032-1040 , 1040.e1–1040.e4
  • 52 Pitt JM, Charrier M, Viaud S. et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 2014; 193 (03) 1006-1011
  • 53 Fan M, Liu H, Yan H. et al. A CAR T-inspiring platform based on antibody-engineered exosomes from antigen-feeding dendritic cells for precise solid tumor therapy. Biomaterials 2022; 282: 121424
  • 54 Zhu H, Wang K, Wang Z. et al. An efficient and safe MUC1-dendritic cell-derived exosome conjugate vaccine elicits potent cellular and humoral immunity and tumor inhibition in vivo . Acta Biomater 2022; 138: 491-504
  • 55 Lu Z, Zuo B, Jing R. et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol 2017; 67 (04) 739-748
  • 56 Viaud S, Terme M, Flament C. et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 2009; 4 (03) e4942
  • 57 Zitvogel L, Regnault A, Lozier A. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998; 4 (05) 594-600
  • 58 Damo M, Wilson DS, Simeoni E, Hubbell JA. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep 2015; 5: 17622
  • 59 Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 2019; 12 (01) 84
  • 60 Jiang C, Zhang N, Hu X, Wang H. Tumor-associated exosomes promote lung cancer metastasis through multiple mechanisms. Mol Cancer 2021; 20 (01) 117
  • 61 Naseri M, Bozorgmehr M, Zöller M, Ranaei Pirmardan E, Madjd Z. Tumor-derived exosomes: the next generation of promising cell-free vaccines in cancer immunotherapy. OncoImmunology 2020; 9 (01) 1779991
  • 62 Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019; 18 (01) 75
  • 63 Gao Y, Xu H, Li N. et al. Renal cancer-derived exosomes induce tumor immune tolerance by MDSCs-mediated antigen-specific immunosuppression. Cell Commun Signal 2020; 18 (01) 106
  • 64 Ma Z, Wei K, Yang F. et al. Tumor-derived exosomal miR-3157-3p promotes angiogenesis, vascular permeability and metastasis by targeting TIMP/KLF2 in non-small cell lung cancer. Cell Death Dis 2021; 12 (09) 840
  • 65 Guo X, Sui R, Piao H. Tumor-derived small extracellular vesicles: potential roles and mechanism in glioma. J Nanobiotechnology 2022; 20 (01) 383
  • 66 Hoshino A, Costa-Silva B, Shen TL. et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527 (7578) 329-335
  • 67 Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367 (6478) eaau6977
  • 68 Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ. Exosomes: small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater 2021; 10: 281-294
  • 69 Qiao L, Hu S, Huang K. et al. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics 2020; 10 (08) 3474-3487
  • 70 Andre F, Schartz NE, Movassagh M. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 2002; 360 (9329) 295-305
  • 71 Taghikhani A, Hassan ZM, Ebrahimi M, Moazzeni SM. microRNA modified tumor-derived exosomes as novel tools for maturation of dendritic cells. J Cell Physiol 2019; 234 (06) 9417-9427
  • 72 Gong H, Zhang Q, Komarla A. et al. Nanomaterial biointerfacing via mitochondrial membrane coating for targeted detoxification and molecular detection. Nano Lett 2021; 21 (06) 2603-2609
  • 73 Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm Sin B 2022; 12 (08) 3233-3254
  • 74 Zhen X, Cheng P, Pu K. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small 2019; 15 (01) e1804105
  • 75 Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release 2020; 327: 546-570
  • 76 Liu L, Pan D, Chen S. et al. Systematic design of cell membrane coating to improve tumor targeting of nanoparticles. Nat Commun 2022; 13 (01) 6181
  • 77 Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 2015; 220 (Pt B): 600-607
  • 78 Wang Y, Chen X, He D, Zhou Y, Qin L. Surface-modified nanoerythrocyte loading DOX for targeted liver cancer chemotherapy. Mol Pharm 2018; 15 (12) 5728-5740
  • 79 Fu S, Liang M, Wang Y. et al. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces 2019; 11 (02) 1841-1854
  • 80 Tao C, Nie X, Zhu W, Iqbal J, Xu C, Wang DA. Autologous cell membrane coatings on tissue engineering xenografts for suppression and alleviation of acute host immune responses. Biomaterials 2020; 258: 120310
  • 81 Han X, Wang C, Liu Z. Red blood cells as smart delivery systems. Bioconjug Chem 2018; 29 (04) 852-860
  • 82 Peng S, Ouyang B, Men Y. et al. Biodegradable zwitterionic polymer membrane coating endowing nanoparticles with ultra-long circulation and enhanced tumor photothermal therapy. Biomaterials 2020; 231: 119680
  • 83 Ye S, Wang F, Fan Z. et al. Light/pH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy. ACS Appl Mater Interfaces 2019; 11 (17) 15262-15275
  • 84 Zhang Y, Xia Q, Wu T. et al. A novel multi-functionalized multicellular nanodelivery system for non-small cell lung cancer photochemotherapy. J Nanobiotechnology 2021; 19 (01) 245
  • 85 Xie H, Li W, Liu H. et al. Erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle for inducing tumor thrombotic infarction by precisely damaging tumor vascular endothelium. Small 2022; 18 (30) e2201933
  • 86 Wang Y, Ji X, Ruan M. et al. Worm-like biomimetic nanoerythrocyte carrying siRNA for melanoma gene therapy. Small 2018; 14 (47) e1803002
  • 87 Zhang Z, Qian H, Huang J. et al. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int J Nanomedicine 2018; 13: 4961-4975
  • 88 Miao Y, Yang Y, Guo L. et al. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy. ACS Nano 2022; 16 (04) 6527-6540
  • 89 Guo H, Zhang W, Wang L, Shao Z, Huang X. Biomimetic cell membrane-coated glucose/oxygen-exhausting nanoreactor for remodeling tumor microenvironment in targeted hypoxic tumor therapy. Biomaterials 2022; 290: 121821
  • 90 Pan WL, Tan Y, Meng W. et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials 2022; 283: 121449
  • 91 Fang Z, Zhang M, Kang R, Cui M, Song M, Liu K. A cancer cell membrane coated nanoparticles-based gene delivery system for enhancing cancer therapy. Int J Pharm 2022; 629: 122415
  • 92 Gan J, Du G, He C. et al. Tumor cell membrane enveloped aluminum phosphate nanoparticles for enhanced cancer vaccination. J Control Release 2020; 326: 297-309
  • 93 Jin J, Krishnamachary B, Barnett JD. et al. Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl Mater Interfaces 2019; 11 (08) 7850-7861
  • 94 Wang Z, Zhang M, Chi S, Zhu M, Wang C, Liu Z. Brain tumor cell membrane-coated lanthanide-doped nanoparticles for NIR-IIb luminescence imaging and surgical navigation of glioma. Adv Healthc Mater 2022; 11 (16) e2200521
  • 95 Chen M, Cui Y, Hao W. et al. Ligand-modified homologous targeted cancer cell membrane biomimetic nanostructured lipid carriers for glioma therapy. Drug Deliv 2021; 28 (01) 2241-2255
  • 96 Zheng B, Liu Z, Wang H. et al. R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced targeting and mucus-penetrating efficiency for intravesical chemotherapy for bladder cancer. J Control Release 2022; 351: 834-846
  • 97 Mohale S, Kunde SS, Wairkar S. Biomimetic fabrication of nanotherapeutics by leukocyte membrane cloaking for targeted therapy. Colloids Surf B Biointerfaces 2022; 219: 112803
  • 98 Wang D, Wang S, Zhou Z. et al. White blood cell membrane-coated nanoparticles: recent development and medical applications. Adv Healthc Mater 2022; 11 (07) e2101349
  • 99 Zhou X, Luo B, Kang K. et al. Leukocyte-repelling biomimetic immunomagnetic nanoplatform for high-performance circulating tumor cells isolation. Small 2019; 15 (17) e1900558
  • 100 Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater 2020; 32 (40) e2002054
  • 101 Chen C, Song M, Du Y. et al. Tumor-associated-macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett 2021; 21 (13) 5522-5531
  • 102 Li J, Wu Y, Wang J. et al. Macrophage membrane-coated nano-gemcitabine promotes lymphocyte infiltration and synergizes antiPD-L1 to restore the tumoricidal function. ACS Nano 2023; 17 (01) 322-336
  • 103 Wang W, Wu F, Mohammadniaei M. et al. Genetically edited T-cell membrane coated AIEgen nanoparticles effectively prevents glioblastoma recurrence. Biomaterials 2023; 293: 121981
  • 104 Kang M, Hong J, Jung M. et al. T-Cell-mimicking nanoparticles for cancer immunotherapy. Adv Mater 2020; 32 (39) e2003368
  • 105 Hao W, Cui Y, Fan Y. et al. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma therapy via drug and antigen delivery. J Nanobiotechnology 2021; 19 (01) 378
  • 106 Wu L, Li Q, Deng J. et al. Platelet-tumor cell hybrid membrane-camouflaged nanoparticles for enhancing therapy efficacy in glioma. Int J Nanomedicine 2021; 16: 8433-8446
  • 107 Zhao Y, Li A, Jiang L, Gu Y, Liu J. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): a multifunctional nanomaterial for biomedical applications. Biomacromolecules 2021; 22 (08) 3149-3167
  • 108 Liao Y, Zhang Y, Blum NT, Lin J, Huang P. Biomimetic hybrid membrane-based nanoplatforms: synthesis, properties and biomedical applications. Nanoscale Horiz 2020; 5 (09) 1293-1302
  • 109 Shen T, Yang S, Qu X. et al. A bionic “Trojan horse”-like gene delivery system hybridized with tumor and macrophage cell membrane for cancer therapy. J Control Release 2023; 358: 204-218
  • 110 Ma W, Yang Y, Zhu J. et al. Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv Mater 2022; 34 (46) e2109609
  • 111 Zhang W, Gong C, Chen Z, Li M, Li Y, Gao J. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer. J Nanobiotechnology 2021; 19 (01) 339
  • 112 Chen H, Deng J, Yao X. et al. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J Nanobiotechnology 2021; 19 (01) 342
  • 113 Zang S, Huang K, Li J. et al. Metabolic reprogramming by dual-targeting biomimetic nanoparticles for enhanced tumor chemo-immunotherapy. Acta Biomater 2022; 148: 181-193
  • 114 Nikfar M, Razizadeh M, Paul R, Muzykantov V, Liu Y. A numerical study on drug delivery via multiscale synergy of cellular hitchhiking onto red blood cells. Nanoscale 2021; 13 (41) 17359-17372
  • 115 Anselmo AC, Gupta V, Zern BJ. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 2013; 7 (12) 11129-11137
  • 116 Su Y, Xie Z, Kim GB, Dong C, Yang J. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 2015; 1 (04) 201-217
  • 117 Yang L, Yang Y, Chen Y, Xu Y, Peng J. Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev 2022; 187: 114394
  • 118 Anselmo AC, Mitragotri S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J Control Release 2014; 190: 531-541
  • 119 Villa CH, Cines DB, Siegel DL, Muzykantov V. Erythrocytes as carriers for drug delivery in blood transfusion and beyond. Transfus Med Rev 2017; 31 (01) 26-35
  • 120 Mukthavaram R, Shi G, Kesari S, Simberg D. Targeting and depletion of circulating leukocytes and cancer cells by lipophilic antibody-modified erythrocytes. J Control Release 2014; 183: 146-153
  • 121 Li Y, Raza F, Liu Y. et al. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279: 121202
  • 122 Parodi A, Molinaro R, Sushnitha M. et al. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 2017; 147: 155-168
  • 123 Brenner JS, Pan DC, Myerson JW. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun 2018; 9 (01) 2684
  • 124 Wang S, Ma S, Li R. et al. Probing the interaction between supercarrier RBC membrane and nanoparticles for optimal drug delivery. J Mol Biol 2023; 435 (01) 167539
  • 125 Sun D, Chen J, Wang Y. et al. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019; 9 (23) 6885-6900
  • 126 Wang P, Wang X, Luo Q. et al. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy. Theranostics 2019; 9 (02) 369-380
  • 127 Ferguson LT, Hood ED, Shuvaeva T. et al. Dual affinity to RBCs and target cells (DART) enhances both organ- and cell type-targeting of intravascular nanocarriers. ACS Nano 2022; 16 (03) 4666-4683
  • 128 Yan M, Jurasz P. The role of platelets in the tumor microenvironment: from solid tumors to leukemia. Biochim Biophys Acta 2016; 1863 (03) 392-400
  • 129 Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 2018; 131 (16) 1777-1789
  • 130 Liu Y, Zhang Y, Ding Y, Zhuang R. Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Crit Rev Oncol Hematol 2021; 167: 103502
  • 131 Roweth HG, Battinelli EM. Lessons to learn from tumor-educated platelets. Blood 2021; 137 (23) 3174-3180
  • 132 Morris K, Schnoor B, Papa AL. Platelet cancer cell interplay as a new therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877 (05) 188770
  • 133 Geranpayehvaghei M, Dabirmanesh B, Khaledi M. et al. Cancer-associated-platelet-inspired nanomedicines for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021; 13 (05) e1702
  • 134 Cacic D, Hervig T, Reikvam H. Platelets for advanced drug delivery in cancer. Expert Opin Drug Deliv 2023; 20 (05) 673-688
  • 135 Li S, Li L, Lin X, Chen C, Luo C, Huang Y. Targeted inhibition of tumor inflammation and tumor-platelet crosstalk by nanoparticle-mediated drug delivery mitigates cancer metastasis. ACS Nano 2022; 16 (01) 50-67
  • 136 Fan X, Wang K, Lu Q. et al. Surface-anchored tumor microenvironment-responsive protein nanogel-platelet system for cytosolic delivery of therapeutic protein in the post-surgical cancer treatment. Acta Biomater 2022; 154: 412-423
  • 137 Zhang Y, Zhu X, Chen X. et al. Activated platelets-targeting micelles with controlled drug release for effective treatment of primary and metastatic triple negative breast cancer. Adv Funct Mater 2019; 29 (13) 1806620
  • 138 Hu Q, Sun W, Wang J. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng 2018; 2 (11) 831-840
  • 139 Li Z, Ding Y, Liu J. et al. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat Commun 2022; 13 (01) 1845
  • 140 Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14 (10) 1014-1022
  • 141 Mitchell MJ, King MR. Leukocytes as carriers for targeted cancer drug delivery. Expert Opin Drug Deliv 2015; 12 (03) 375-392
  • 142 Dong X, Chu D, Wang Z. Leukocyte-mediated delivery of nanotherapeutics in inflammatory and tumor sites. Theranostics 2017; 7 (03) 751-763
  • 143 Yang L, Zhang Y, Zhang Y. et al. Live macrophage-delivered doxorubicin-loaded liposomes effectively treat triple-negative breast cancer. ACS Nano 2022; 16 (06) 9799-9809
  • 144 Ye B, Zhao B, Wang K. et al. Neutrophils mediated multistage nanoparticle delivery for prompting tumor photothermal therapy. J Nanobiotechnology 2020; 18 (01) 138
  • 145 Hosseinalizadeh H, Mahmoodpour M, Razaghi Bahabadi Z, Hamblin MR, Mirzaei H. Neutrophil mediated drug delivery for targeted glioblastoma therapy: a comprehensive review. Biomed Pharmacother 2022; 156: 113841
  • 146 Wu Y, Han X, Zheng R. et al. Neutrophil mediated postoperative photoimmunotherapy against melanoma skin cancer. Nanoscale 2021; 13 (35) 14825-14836
  • 147 Ren K, He J, Qiu Y. et al. A neutrophil-mediated carrier regulates tumor stemness by inhibiting autophagy to prevent postoperative triple-negative breast cancer recurrence and metastasis. Acta Biomater 2022; 145: 185-199
  • 148 Luo Z, Lu Y, Shi Y. et al. Neutrophil hitchhiking for drug delivery to the bone marrow. Nat Nanotechnol 2023; 18 (06) 647-656
  • 149 Chu D, Dong X, Zhao Q, Gu J, Wang Z. Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration. Adv Mater 2017; 29 (27) 10 .1002/adma.201701021
  • 150 Jones RB, Mueller S, Kumari S. et al. Antigen recognition-triggered drug delivery mediated by nanocapsule-functionalized cytotoxic T-cells. Biomaterials 2017; 117: 44-53
  • 151 Wang X, Zhang Q, Zhou J. et al. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. J Immunother Cancer 2023; 11 (02) e006493
  • 152 Niu W, Xiao Q, Wang X. et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett 2021; 21 (03) 1484-1492
  • 153 Qiao Z, Zhang K, Liu J. et al. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat Commun 2022; 13 (01) 7164
  • 154 Han X, Bi L, Wu Y. et al. Genetically engineered exosomes for targetedly preventing premetastatic niche formation and suppressing postoperative melanoma lung metastasis. Nano Today 2022; 46: 101597
  • 155 Taieb J, Chaput N, Schartz N. et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 2006; 176 (05) 2722-2729
  • 156 Huang L, Rong Y, Tang X. et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer 2022; 21 (01) 45
  • 157 Huang C, Liu Z, Chen M. et al. Tumor-derived biomimetic nanozyme with immune evasion ability for synergistically enhanced low dose radiotherapy. J Nanobiotechnology 2021; 19 (01) 457
  • 158 Chen K, Wang Y, Liang H. et al. Intrinsic Biotaxi solution based on blood cell membrane cloaking enables fullerenol thrombolysis in vivo . ACS Appl Mater Interfaces 2020; 12 (13) 14958-14970
  • 159 Wu X, Zhang X, Feng W. et al. A targeted erythrocyte membrane-encapsulated drug-delivery system with anti-osteosarcoma and anti-osteolytic effects. ACS Appl Mater Interfaces 2021; 13 (24) 27920-27933
  • 160 Wu Y, Zhu R, Zhou M. et al. Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett 2023; 558: 216106
  • 161 Xie X, Hu X, Li Q. et al. Unraveling cell-type-specific targeted delivery of membrane-camouflaged nanoparticles with plasmonic imaging. Nano Lett 2020; 20 (07) 5228-5235
  • 162 Li Q, Su R, Bao X. et al. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater 2022; 144: 109-120
  • 163 Jun Y, Tang Z, Luo C. et al. Leukocyte-mediated combined targeted chemo and gene therapy for esophageal cancer. ACS Appl Mater Interfaces 2020; 12 (42) 47330-47341