Klin Monbl Augenheilkd 2000; 216(2): 83-89
DOI: 10.1055/s-2000-10523
ÜBERSICHT

Georg Thieme Verlag Stuttgart · New York

Therapieversuche bei RP: Licht am Ende des Tunnels?[1] [2]

Therapeutic Approaches in RP: Light at the End of the Tunnel?Mathias Abegg, Farhad Hafezi, Andreas Wenzel, Christian Grimm, Charlotte  E. Remé
  • Labor für Zellbiologie der Netzhaut, Universitäts-Augenklinik Zürich (Direktor: Prof. Dr. B. Gloor), Frauenklinikstrasse 24,
  • CH-8091 Zürich
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Zusammenfassung

Die genetisch und klinisch heterogene Netzhauterkrankung Retinitis Pigmentosa stellt mit einer Prävalenz von 3,5 ‰ eine relativ häufige Ursache für Erblindung in den Industrienationen dar. Seit Jahrzehnten wird an einer Vielzahl von Tiermodellen, die zum Teil dem Menschen analoge Mutationen tragen, die Ätiologie dieser Krankheit studiert. Es steht jedoch bis heute keine Therapie zur Verfügung, die den Verlauf dieser Erkrankung beeinflussen und den apoptotischen Zelltod der Photorezeptoren aufhalten könnte. In letzter Zeit haben sich vielversprechende neue Therapieansätze ergeben, die nun im Tiermodell erprobt werden. Neben Versuchen, die degenerierten Photorezeptorzellen durch einen prä- oder subretinal eingepflanzten Mikrochip zu ersetzen, scheinen sowohl die somatische Gentherapie als auch die Hemmung des Photorezeptorzelltodes durch Apoptose mittels Wachstumsfaktoren und anderen pharmakologischen Substanzen aussichtsreiche Ansätze für künftige Therapien zu sein. Ein besseres Verständnis der molekularen Abläufe, die der Degeneration der Photorezeptorzellen durch Apoptose zugrunde liegen, ist dabei jedoch eine unabdingbare Voraussetzung.

Retinitis pigmentosa (RP) is a hereditary retinal dystrophy which leads to severe visual impairment or blindness and affects about 3.5 ‰ of individuals in the industrial world. During the past decades, numerous animal models carrying mutations analogous to mutations in human RP have been studied to elucidate the molecular mechanisms leading to apoptotic photoreceptor cell death in this disease. Up to date, there is no effective treatment to influence the fatal outcome of RP. Recent progress in basic research promotes the development of new therapeutic strategies. In order to restore visual function in blind individuals, the development of electronic photoreceptor prosthesis is being investigated by several researchgroups. Other promising approaches are somatic gene therapy, the application of growth factors and/or pharmacological agents and the inhibition of photoreceptor cell death by interfering with the apoptotic pathway. However, a better understanding of the molecular events leading to cell loss due to photoreceptor apoptosis will be essential for the development of effective treatment.

1 Herrn Prof. Dr. Balder Gloor gewidmet.

2 Manuskript eingereicht am 18. 8. 99 und in der vorliegenden Form angenommen.

Literatur

1 Herrn Prof. Dr. Balder Gloor gewidmet.

2 Manuskript eingereicht am 18. 8. 99 und in der vorliegenden Form angenommen.

  • 01 Ali  R R, Reichel  M B, De Alwis  M, Kanuga  N, Kinnon  C, Levinsky  R J et al. Adeno-associated virus gene transfer to mouse retina.  Hum Gene Ther. 1998;  9 (1) 81-86
  • 02 Ali  R R, Reichel  M B, Thrasher  A J, Levinsky  R J, Kinnon  C, Kanuga  N  et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector.  Hum Mol Genet. 1996;  5 ((5) 591-594
  • 03 Bennett  J, Tanabe  T, Sun  D, Zeng  Y, Kjeldbye  H, Gouras  P  et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy.  Nat Med. 1996;  2 ((6) 649-654
  • 04 Berson  EL. Retinitis pigmentosa. The Friedenwald Lecture.  Invest Ophthalmol Vis Sci. 1993;  34 ((5) 1659-1676
  • 05 Bowes  C, Li  T, Danciger  M, Baxter  L C, Applebury  M L, Farber  D B. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase “see comments”.  Nature. 1990;  347 (6294) 677-680
  • 06 Bowes  C, Li  T, Frankel  W N, Danciger  M, Coffin  J M, Applebury  M L et al. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase.  Proc Natl Acad Sci USA. 1993;  90 (7) 2955-2959
  • 07 Brückner  R  et al. Spaltlampenmikroskopie und Ophthalmoskopie am Auge von Ratte und Maus.  Doc Ophthalmol. 1951;  5 - 6 452-554
  • 08 Buchi  E R. Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer.  Exp Eye Res. 1992;  55(4) 605-613
  • 09 Chang  G Q, Hao  Y, Wong  F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice.  Neuron. 1993;  11 (4) 595-605
  • 10 Chen  J, Flannery  J G, LaVail  M M, Steinberg  R H, Xu  J, Simon  M I. bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations.  Proc Natl Acad Sci USA. 1996;  93 (14) 7042-7047
  • 11 Curran  T, Franza  B R Jr. Fos and Jun: the AP-1 connection.  Cell. 1988;  55 (3) 395-397
  • 12 del Cerro  M, Lazar  E S, Diloreto  D Jr. The first decade of continuous progress in retinal transplantation.  Microsc Res Tech. 1997;  36 (2) 130-141
  • 13 Di Polo  A, Lerner  L E, Farber  D B. Transcriptional activation of the human rod cGMP-phosphodiesterase beta-subunit gene is mediated by an upstream AP-1 element.  Nucleic Acids Res. 1997;  25 (19) 3863-3867
  • 14 Eckmiller  R. Learning retina implants with epiretinal contacts.  Ophthalmic Res. 1997;  29 (5) 281-289
  • 15 Faktorovich  E G, Steinberg  R H, Yasumura  D, Matthes  M T, LaVail  M M. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor.  Nature. 1990;  347 (6288) 83-86
  • 16 Farber  D B. From mice to men: the cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture [published erratum appears in Invest Ophthalmol Vis Sci 1995 May; 36 (6): 976].  Invest Ophthalmol Vis Sci. 1995;  36 (2) 263-275
  • 17 Gal  A, Apfelstedt-Sylla  E, Janecke  A R, Zrenner  E. Rhodopsin mutations in inherited retinal dystrophies and dysfunctions.  Progr Ret Eye Res. 1996;  16 (1) 51-79
  • 18 Gouras  P, Du  J, Kjeldbye  H, Yamamoto  S, Zack  D J. Long-term photoreceptor transplants in dystrophic and normal mouse retina.  Invest Ophthalmol Vis Sci. 1994;  35 (8) 3145-3153
  • 19 Hafezi  F, Abegg  M, Wenzel  A, Grimm  C, Stürmer  J, Farber  D B et al. Retinal degeneration in the rd mouse in the absence of c-fos.  Invest Ophthalmol Vis Sci. 1998;  39 (12) 2234-2244
  • 20 Hafezi  F, Grimm  C, Wenzel  A, Weitzman  J, Yaniv  M, Abegg  M  et al. Retinal photoreceptors are apoptosis-competent in the absence of JunD/AP-1.  Cell Death Diff. 1999;  (in press)
  • 21 Hafezi  F, Marti  A, Grimm  C, Wenzel  A, Remé  C E. Differential DNA-binding activities of the transcription factors AP-1 and Oct-1 during light-induced apoptosis of photoreceptors.  Vis Res. 1999;  39 2511-2518
  • 22 Hafezi  F, Steinbach  J P, Marti  A, Munz  K, Wang  Z Q, Wagner  E F et al. The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo.  Nat Med. 1997;  3 (3) 346-349
  • 23 Hopp  R M, Ransom  N, Hilsenbeck  S G, Papermaster  D S, Windle  J J. Apoptosis in the murine rd1 retinal degeneration is predominantly p53-independent.  Mol Vis. 1998;  4 5
  • 24 Humayun  M S, de Juan  E, Jr., Dagnelie  G, Greenberg  R J, Propst  R H, Phillips  D H. Visual perception elicited by electrical stimulation of retina in blind humans.  Arch Ophthalmol. 1996;  114 (1) 40-46
  • 25 Jomary  C, Vincent  K A, Grist  J, Neal  M J, Jones  S E. Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration.  Gene Ther. 1997;  4(7) 683-690
  • 26 Karin  M, Liu  Z, Zandi  E. AP-1 function and regulation.  Curr Opin Cell Biol. 1997;  9(2) 240-246
  • 27 Karli  P. Rétines sans cellkules visuelles. Recherches morphologiques, physiologiques et physiopathologiques chez les ronguers.  Arch Anat Histol Embryol. 1952;  35 1-76
  • 28 Keeler  C E. The inheritance of a retinal abnormality in white mice.  Proc Natl Acad Sci USA. 1924;  10 329-333
  • 29 Keeler  C E. Retinal Degeneration in the Mouse Is Rodless Retina.  The Journal of Heredity. 1966;  47-50
  • 30 Kumar-Singh  R, Farber  D B. Encapsulated adenovirus minichromosome (EAM)-mediated rescue of retinal degeneration in the rd mouse and construction of second generation EAMSs and helper virions.  Invest Ophthalmol Vis Sci. 1998;  39(4) S1118. Abstract nr 5152
  • 31 Kwan  A S, Oliver  P B, Coffey  P J, Litchfield  T M, Whiteley  S J, Lund  R D. Photophobic responses of rd mice and effects of retinal transplantation.  Invest Ophthalmol Vis Sci. 1998;  39 (4) S95.Abstract nr 443
  • 32 Lambiase  A, Aloe  L. Nerve growth factor delays retinal degeneration in C3H mice.  Graefe's Arch Clin Exp Ophthalmol. 1996;  234 Suppl 1 S96-100
  • 33 LaVail  M M, Unoki  K, Yasumura  D, Matthes  M T, Yancopoulos  G D, Steinberg  R H. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light.  Proc Natl Acad Sci USA. 1992;  89(23) 11249-11253
  • 34 LaVail  M W, Yasumura  D, Matthes  M T, Lau Villacorta  C, Unoki  K, Sung  C H et al. Protection of mouse photoreceptors by survival factors in retinal degenerations.  Invest Ophthalmol Vis Sci. 1998;  39(3) 592-602
  • 35 Lewin  A S, Drenser  K A, Hauswirth  W W, Nishikawa  S, Yasumura  D, Flannery  J G et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa.  Nat Med. 1998;  4 (8) 967-971
  • 36 Li  Z-Y, Milam  A H. Apoptosis in retinitis pigmentosa. In: Anderson RE, LaVail MM, Hollyfield JG (Hrsg). Retinal Degeneration. Plenum Press, New York, London; 1995: 1-8
  • 37 Marti  A, Hafezi  F, Lansel  N, Hegi  M E, Wenzel  A, Grimm  C  et al. Light-induced cell death of retinal photoreceptors in the absence of p53.  Invest Ophthalmol Vis Sci. 1998;  39(5) 846-849
  • 38 Martinou  J C, Dubois Dauphin  M, Staple  J K, Rodriguez  I, Frankowski  H, Missotten  M  et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia.  Neuron. 1994;  13(4) 1017-1030
  • 39 McLaughlin  M E, Sandberg  M A, Berson  E L, Dryja  T P. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa.  Nat Genet. 1993;  4(2) 130-134
  • 40 Noell  W K, Walker  V S, Kang  B S, Berman  S. Retinal damage by light in rats.  Invest Ophthalmol Vis Sci. 1966;  5(5) 450-473
  • 41 Papermaster  D S. Apoptosis Of the Mammalian Retina and Lens.  Cell Death and Differentiation. 1997;  4 (1) 21-28
  • 42 Pittler  S J, Keeler  C E, Sidman  R L, Baehr  W. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect.  Proc Natl Acad Sci USA. 1993;  90 (20) 9616-9619
  • 43 Portera Cailliau  C, Sung  C H, Nathans  J, Adler  R. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa.  Proc Natl Acad Sci USA. 1994;  91 (3) 974-978
  • 44 Rehemtulla  A, Warwar  R, Kumar  R, Ji  X, Zack  D J, Swaroop  A. The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression.  Proc Natl Acad Sci USA. 1996;  93 (1) 191-195
  • 45 Remé  C E, Grimm  C, Hafezi  F, Marti  A, Wenzel  A. Apoptotic cell death in retinal degenerations.  Prog Retin Eye Res. 1998;  17 (4) 443-464
  • 46 Remé  C E, Hafezi  F, Marti  A, Munz  K, Reinboth  J-J. Light damage to retina and pigment epithelium. In: Marmor MF, Wolfensberger TJ (Hrsg). The retinal pigment epithelium, current aspects of function and disease. Oxford University Press, Oxford 1998;
  • 47 Remé  C E, Weller  M, Szczesny  P, Munz  K, Hafezi  F, Reinboth  J J et al. Light-induced apoptosis in the rat retina in vivo: Morphological features, threshold and time course. In: Anderson RE, LaVail MM, Hollyfield JG (Hrsg). Retinal Degeneration. Plenum Press, New York, London; 1995: 19-25
  • 48 Rich  K A, Zhan  Y, Blanks  J C. Aberrant expression of c-Fos accompanies photoreceptor cell death in the rd mouse.  J Neurobiol. 1997;  32 (6) 593-612
  • 49 Shastry  B S. Signal transduction in the retina and inherited retinopathies.  Cell Mol Life Sci. 1997;  53 419-429
  • 50 Smith  S B, Hashimi  W, Yielding  K L. Retinal degeneration in the mouse induced transplacentally by N-methyl-N-nitrosourea: effects of constant illumination or total darkness.  Exp Eye Res. 1988;  47 (3) 347-359
  • 51 Sullivan  L S, Daiger  S P. Inherited retinal degeneration: exceptional genetic and clinical heterogeneity.  Mol Med Today. 1996;  2(9) 380-386
  • 52 Tansley  K. Hereditary degeneration of the mouse retina.  Br J Ophtalmol. 1951;  35 573-582
  • 53 Wyllie  A H, Kerr  J FR, Currie  A R. Cell death: the signification of apoptosis.  Int Rev Cytol. 1980;  68 251-306
  • 54 Zrenner  E, Miliczek  K D, Gabel  V P, Graf  H G, Guenther  E, Haemmerle  H  et al. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors.  Ophthalmic Res. 1997;  29 (5) 269-280
    >