References
<A NAME="RS04103ST-1">1</A>
Richardson FB.
Spec. Publ. R. Soc. Chem.
1992,
107:
161
<A NAME="RS04103ST-2A">2a</A>
Maddox J, and
Schoen W. inventors; U.S. Pat. 3623979.
; Chem. Abstr. 1972, 76, 115831
<A NAME="RS04103ST-2B">2b</A>
Maddox J. inventors; U.S. Pat. 3758493.
; Chem. Abstr.
1974, 80, 29070
<A NAME="RS04103ST-2C">2c</A>
Chappell GD, and
Standfor JR. inventors; U.S. Pat. 4010111.
; Chem. Abstr.
1977, 87, 9542
<A NAME="RS04103ST-2D">2d</A>
Oppenlaender K,
Stork K, and
Barthold K. inventors; US Pat. 4388214.
; Chem. Abstr.
1983, 99, 179936
<A NAME="RS04103ST-2E">2e</A>
McCullough TM. inventors; U.S. Pat. 5062992.
; Chem. Abstr.
1983, 99, 179936
<A NAME="RS04103ST-3A">3a</A>
Butler RN.
O’Regan CB.
Moynihan P.
J. Chem. Soc., Perkin Trans. 1
1976,
386
<A NAME="RS04103ST-3B">3b</A>
Butler RN.
Thornton JD.
Moynihan P.
J. Chem. Res, Synop.
1981,
84
<A NAME="RS04103ST-3C">3c</A>
Bistline RG.
Hampson JW.
Linfield WM.
J. Am. Oil Chem. Soc.
1983,
60:
823
<A NAME="RS04103ST-3D">3d</A>
Martin JA.
Valone FW.
Corrosion
1985,
41:
281
<A NAME="RS04103ST-3E">3e</A>
Kolomiets VS.
Kobesheva NI.
Babynina VS.
Kataeva VA.
Zh. Prik. Khim.
1987,
60:
2732 ; Chem. Abstr. 1988, 109, 128898
<A NAME="RS04103ST-4A">4a</A>
Strauss CR.
Trainor RW.
Aust. J. Chem.
1995,
48:
1665
<A NAME="RS04103ST-4B">4b</A>
Caddick S.
Tetrahedron
1995,
51:
10403
<A NAME="RS04103ST-4C">4c</A>
Galema S.
Chem. Soc. Rev.
1997,
26:
233
<A NAME="RS04103ST-4D">4d</A>
Strauss CR.
Aust. J. Chem.
1999,
52:
86
<A NAME="RS04103ST-4E">4e</A>
Romanova NN.
Kudan PV.
Gravis AG.
Bundel Yu G.
Chem. Heterocycl. Compd.
2000,
36:
1130
<A NAME="RS04103ST-4F">4f</A>
Lidström P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RS04103ST-4G">4g</A>
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
<A NAME="RS04103ST-5A">5a</A>
Hayes BL.
Microwave Synthesis: Chemistry at the Speed of Light
CEM Publishing;
Matthews NC:
2002.
<A NAME="RS04103ST-5B">5b</A>
Loupy A.
Microwave in Organic Synthesis
Wiley-VCH;
New York:
2002.
<A NAME="RS04103ST-6A">6a</A>
Loupy A.
Petit A.
Hamelin J.
Texier-Boullet F.
Jacquault P.
Mathé D.
Synthesis
1998,
1233
<A NAME="RS04103ST-6B">6b</A>
Varma RS.
Green Chem.
1999,
43
<A NAME="RS04103ST-6C">6c</A>
Varma RS.
Pure Appl. Chem.
2001,
73:
193
<A NAME="RS04103ST-7">7</A>
For microwave safety consideration see ref.
[5a]
, p. 175-179.
<A NAME="RS04103ST-8A">8a</A>
Pilard J.-F.
Klein B.
Texier-Boullet F.
Hamelin J.
Synlett
1991,
219
<A NAME="RS04103ST-8B">8b</A>
Bougrin K.
Soufiaoui M.
Tetrahedron Lett.
1995,
21:
3683
<A NAME="RS04103ST-8C">8c</A>
Ossaid B.
Berlan J.
Soufiaoui M.
Garrigues B.
Synth. Commun.
1995,
25:
659
<A NAME="RS04103ST-8D">8d</A>
Brain C.
Paul JM.
Synlett
1999,
1642
<A NAME="RS04103ST-8E">8e</A>
Kerneur G.
Lerestif JM.
Bazureau JP.
Hamelin J.
Synthesis
1997,
287
<A NAME="RS04103ST-8F">8f</A>
Marrero-Terrero AL.
Loupy A.
Synlett
1996,
245
<A NAME="RS04103ST-8G">8g</A>
Usyatinsky AY.
Khmelnitsky YL.
Tetrahedron Lett.
2000,
41:
5031
<A NAME="RS04103ST-8H">8h</A>
Uchida H.
Tanikoshi H.
Nakamura S.
Reddy PY.
Toru T.
Synlett
2003,
1117
<A NAME="RS04103ST-9">9</A>
Microwave irradiations was carried out with a DMW (Panasonic NM-5460A, 800 W, 2450
MHz) and a MMW (MIC-I, 600 W, from SEV, México). For the reactions using a DMW the
final temperatures were measured directly, immediately at the end of the reaction,
with a contact thermometer embedded in the reaction mixture. For a comparison multimode
vs monomode microwave oven see ref.
[4b]
and ref.
[6a]
<A NAME="RS04103ST-10">10</A>
Typical Experimental Procedure: In an open Pyrex vessel (100 mL, for DMW) or sealed tube (100 mL, for MMW) were carefully
mixed 0.52 g (5.0 mmol) of aminoethyl-ethanolamine (3), 5.0 mmol of the corresponding fatty acid (4a-d) and 2.5 g of CaO. The resulting mixture was irradiated using the power and the reaction
time showed in Table
[1]
. The reaction mixture was allowed to reach room temperature, EtOAc (20 mL) was added
and the mixture was heated until boiling and filtered off while hot, and the filtrated
was concentrated under vacuum to dryness, yielding the corresponding product as a
white solid.
<A NAME="RS04103ST-11">11</A>
[2-(2-Hydroxyethylamino)ethyl]heptadecylamide (2a): Recrystallization from EtOAc. Mp 102-103 °C (lit
[3a]
103-105 °C). IR (KBr): 3300-3270, 2920, 2850, 1641 cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.86 (t, J = 6.0 Hz, 3 H), 1.23 (sa, 28 H), 1.45-1.63 (m, 2 H), 2.19 (t, J = 7.9 Hz, 2 H), 2.72-2.92 (m, 4 H), 3.39 (q, J = 6.0 Hz, 2 H), 3.70 (t, J = 5.0 Hz, 2 H), 4.10 (sa, 1 H). 13C NMR (50 MHz, CDCl3): δ = 14.3, 22.8, 26.0, 29.4, 29.6, 29.7, 32.0, 36.8, 38.9, 48.6, 51.1, 60.4, 173.5.
2-Heptadecyl-1-(2-hydroxyethyl)-2-imidazoline (1a): Recrystallization from EtOAc. Mp 62-63 °C (lit
[3a]
63-65 °C). IR (KBr): 3310, 2917, 2849, 1602 cm-1 1H NMR (200 MHz, CDCl3): δ = 0.86 (t, J = 6.0 Hz, 3 H), 1.23 (sa, 28 H), 1.45-1.65 (m, 2 H), 2.22 (t, J = 5.8 Hz, 2 H), 3.22 (t, J = 5.4 Hz, 2 H), 3.29-3.39 (m, 2 H), 3.61-3.71 (m, 4 H), 3.76 (sa, 1 H). 13C NMR (50 MHz, CDCl3): δ = 14.3, 22.8, 26.6, 28.0, 29.5, 29.68, 29.72, 29.8, 49.4, 50.2, 51.6, 59.8, 168.0.
<A NAME="RS04103ST-12">12</A>
The thermal heating reaction protocol was as in the case of microwave methodology
except that the glass tube containing the reagents and a magnetic stirring bar, was
placed into a preheated oil bath at 150 ºC. The temperature of each was measured for
5 s using a thermometer embedded in the reaction mixture. The work-up procedure was
as with the microwave methodology.