References
<A NAME="RU13703ST-1">1</A>
Searle PA.
Molinski TF.
J. Am. Chem. Soc.
1995,
117:
8126
<A NAME="RU13703ST-2A">2a</A>
Molinski TF.
Antonio J.
J. Nat. Prod.
1993,
56:
54
<A NAME="RU13703ST-2B">2b</A>
Molinski TF.
Tetrahedron Lett.
1998,
37:
7879
<A NAME="RU13703ST-2C">2c</A>
Searle PA.
Molinski TF.
Brzeainski LJ.
Leahy JW.
J. Am. Chem. Soc.
1996,
118:
9422
<A NAME="RU13703ST-3A">3a</A>
Lee CS.
Forsyth CJ.
Tetrahedron Lett.
1996,
37:
6449
<A NAME="RU13703ST-3B">3b</A>
Cink RD.
Forsyth CJ.
J. Org. Chem.
1997,
62:
5672
<A NAME="RU13703ST-3C">3c</A>
Pattenden G.
Plowright AT.
Tornos JA.
Ye T.
Tetrahedron Lett.
1998,
39:
6099
<A NAME="RU13703ST-3D">3d</A>
Ahmed F.
Forsyth CJ.
Tetrahedron Lett.
1998,
39:
183
<A NAME="RU13703ST-3E">3e</A>
Ye T.
Pattenden G.
Tetrahedron Lett.
1998,
39:
319
<A NAME="RU13703ST-3F">3f</A>
Paterson I.
Arnott EA.
Tetrahedron Lett.
1998,
39:
7185
<A NAME="RU13703ST-3G">3g</A>
Williams DR.
Clark MP.
Berliner MA.
Tetrahedron Lett.
1999,
40:
2287
<A NAME="RU13703ST-3H">3h</A>
Williams DR.
Clark MP.
Tetrahedron Lett.
1999,
40:
2291
<A NAME="RU13703ST-3I">3i</A>
Wolbers P.
Misske AM.
Hoffmann HMR.
Tetrahedron Lett.
1999,
40:
4527
<A NAME="RU13703ST-3J">3j</A>
Wolbers P.
Hoffmann HMR.
Tetrahedron
1999,
55:
1905
<A NAME="RU13703ST-3K">3k</A>
Misske AM.
Hoffmann HMR.
Tetrahedron
1999,
55:
4315
<A NAME="RU13703ST-3L">3l</A>
Wolbers P.
Hoffmann HMR.
Synthesis
1999,
2291
<A NAME="RU13703ST-3M">3m</A>
Evans DA.
Cee VJ.
Smith TE.
Santiaga KJ.
Org. Lett.
1999,
1:
87
<A NAME="RU13703ST-3N">3n</A>
Smith AB.
Verhoest PR.
Minbiole KP.
Lim JJ.
Org. Lett.
1999,
1:
909
<A NAME="RU13703ST-3O">3o</A>
Smith AB.
Minbiole KP.
Verhoest PR.
Beauchamp TJ.
Org. Lett.
1999,
1:
913
<A NAME="RU13703ST-3P">3p</A>
Wolbers P.
Hoffmann HMR.
Sasse F.
Synlett
1999,
1808
<A NAME="RU13703ST-3Q">3q</A>
Pattenden G.
Plowright AT.
Tetrahedron Lett.
2000,
41:
983
<A NAME="RU13703ST-3R">3r</A>
Greer PB.
Donaldson WA.
Tetrahedron Lett.
2000,
41:
3801
<A NAME="RU13703ST-3S">3s</A>
Rychnovsky SD.
Thomas CR.
Org. Lett.
2000,
2:
1217
<A NAME="RU13703ST-3T">3t</A>
Williams DR.
Clark MP.
Emde V.
Berliner MA.
Org. Lett.
2000,
2:
3023
<A NAME="RU13703ST-3U">3u</A>
Schaus JV.
Panek JS.
Org. Lett.
2000,
2:
469
<A NAME="RU13703ST-3V">3v</A>
Evans DA.
Cee VJ.
Smith TE.
Fitch DM.
Cho PS.
Angew. Chem. Int. Ed.
2000,
39:
2533
<A NAME="RU13703ST-3W">3w</A>
Evans DA.
Fitch DM.
Angew. Chem. Int. Ed.
2000,
39:
2536
<A NAME="RU13703ST-3X">3x</A>
Huang H.
Panek JS.
Org. Lett.
2001,
3:
1693
<A NAME="RU13703ST-3Y">3y</A>
White JD.
Kranemann CL.
Kuntiyong P.
Org. Lett.
2001,
3:
4003
<A NAME="RU13703ST-3Z">3z</A>
Greer PB.
Donaldson WA.
Tetrahedron
2002,
58:
6009
<A NAME="RU13703ST-4A">4a</A>
Paterson I.
Luckhurst CA.
Tetrahedron Lett.
2003,
44:
3749
<A NAME="RU13703ST-4B">4b</A>
Liu B.
Zhou W.-S.
Tetrahedron Lett.
2003,
44:
4933
<A NAME="RU13703ST-4C">4c</A>
Haustedt LO.
Hartung IV.
Hoffmann HMR.
Angew. Chem. Int. Ed.
2003,
42:
2711
<A NAME="RU13703ST-5A">5a</A>
Forsyth CJ.
Ahmed F.
Cink RD.
Lee CS.
J. Am. Chem. Soc.
1998,
120:
5597
<A NAME="RU13703ST-5B">5b</A>
Evans DA.
Smith TE.
Cee VJ.
J. Am. Chem. Soc.
2000,
122:
10033
<A NAME="RU13703ST-5C">5c</A>
Smith AB.
Verhoest PR.
Minbiole KP.
Schelhaas M.
J. Am. Chem. Soc.
2001,
123:
4834
<A NAME="RU13703ST-5D">5d</A>
Smith ABIII.
Minbiole KP.
Verhoest PR.
Schelhaas M.
J. Am. Chem. Soc.
2001,
123:
10942
<A NAME="RU13703ST-5E">5e</A>
Gonzalez MA.
Pattenden G.
Angew. Chem. Int. Ed.
2003,
42:
1255
<A NAME="RU13703ST-5F">5f</A>
Williams DR.
Kiryanov AA.
Emde U.
Clark MP.
Berliner MA.
Reeves JT.
Angew. Chem. Int. Ed.
2003,
42:
1258
<A NAME="RU13703ST-6A">6a</A> The methyl ketone 15 was conveniently prepared from1-(tert-butyl-diphenyl-silanyloxy)-hex-5-en-3R-ol, see:
Smith AB.
Lin Q.
Nakayama K.
Boldi AM.
Brook CS.
McBriar MD.
Moser WH.
Sobukawa M.
Zhuang L.
Tetrahedron Lett.
1997,
38:
8675
<A NAME="RU13703ST-6B">6b</A>
Protection of 1-(tert-butyl-diphenyl-silanyloxy)-hex-5-en-3R-ol with PMB protecting group [Cl3C(NH)OPMB, 0.03 equiv BF3·OEt2, CH2Cl2-cyclohexane, 0 °C, 87%) followed by Wacker oxidation of the resulting substance (catalyst
PdCl2, CuCl, O2, DMF-H2O, r.t., 12 h, 86%) provided 6.
<A NAME="RU13703ST-7">7</A>
Luche JL.
J. Am. Chem. Soc.
1978,
100:
2226
<A NAME="RU13703ST-8A">8a</A>
Sato M.
Kuroda H.
Kaneko C.
Furuya T.
J. Chem. Soc., Chem. Commun.
1994,
6:
687
<A NAME="RU13703ST-8B">8b</A>
Uesato S.
Takeda Y.
Hashimoto T.
Uobe K.
Inouye H.
Taguchi H.
Endo T.
Helv. Chim. Acta
1984,
67:
2111
<A NAME="RU13703ST-9">9</A> For a review on Wacker oxidation, see:
Tsuji J.
Synthesis
1984,
369
<A NAME="RU13703ST-10">10</A> The aldehyde 7 was constructed from the known ethyl 2-hydroxymethyl-oxazole-4-carboxylate, via silylation
of the primary hydroxyl (TBSCl, imidazole, DMF, r.t., 96%) followed by partial reduction
of the ester (DIBAL-H, CH2Cl2, -78 °C, 85%), see:
Panek JS.
Beresis RT.
J. Org. Chem.
1996,
61:
6496
<A NAME="RU13703ST-11">11</A>
Dess DB.
Martin JC.
J. Am. Chem. Soc.
1991,
113:
7277
<A NAME="RU13703ST-12">12</A>
Newton RF.
Reynolds DP.
Finch MAW.
Kelly DR.
Roberts SM.
Tetrahedron Lett.
1979,
20:
3981
<A NAME="RU13703ST-13">13</A>
The configuration of 13 was confirmed by NOE measurements. Compound 13: 1H NMR (600 MHz, CDCl3) δ = 7.51 (s, 1 H), 7.14 (d, J = 8.7 Hz, 2 H), 6.75 (d, J = 8.7 Hz, 2 H), 4.73 (s, 2 H), 4.42 (s, 2 H), 4.36 (d, J = 10.5 Hz, 1 H), 3.85-3.90 (m, 1 H), 3.80 (s, 3 H), 3.64-3.67 (m, 1 H), 3.60-3.62
(m, 1 H), 3.53-3.56 (m, 1 H), 2.28 (dt, J = 12.6, 2.4 Hz, 1 H), 2.01 (dt, J = 12.3, 2.4 Hz, 1H), 1.88-1.93 (m, 1 H), 1.78-1.83 (m, 1 H), 1.34 (app q, J = 11.7 Hz, 1 H), 1.28 (app q, J = 10.5 Hz, 1 H), 0.92 (s, 9 H), 0.10 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 162.5, 159.1, 141.2, 135.2, 130.5 129.2, 113.7, 73.1, 72.5, 71.0, 67.8, 66.1,
58.3, 55.2, 40.9, 40.0, 36.0, 25.7, 18.3, -5.4.
<A NAME="RU13703ST-14A">14a</A>
Mukaiyama T.
Banno K.
Naraska K.
J. Am. Chem. Soc.
1974,
96:
7503
<A NAME="RU13703ST-14B">14b</A> For 1,3-asymmetric induction in diastereoselective Mukaiyama aldol addition reaction,
see:
Evans DA.
Dart MJ.
Duffy JL.
Yang MG.
J. Am. Chem. Soc.
1996,
118:
4322
<A NAME="RU13703ST-14C">14c</A> Also see:
Reetz MT.
Jung A.
J. Am. Chem. Soc.
1983,
105:
4833
<A NAME="RU13703ST-15">15</A>
The diastereoselective ratio was measured by HPLC analysis.
<A NAME="RU13703ST-16">16</A>
Lombardo L.
Org. Synth.
1987,
65:
81
<A NAME="RU13703ST-17">17</A>
Takai K.
Kakiuchi T.
Kataoka Y.
Utimoto K.
J. Org. Chem.
1994,
59:
2668
<A NAME="RU13703ST-18">18</A>
Petasis NA.
Bzowej EI.
J. Am. Chem. Soc.
1990,
112:
6392
<A NAME="RU13703ST-19">19</A>
Matsubara S.
Sugihara M.
Utimoto K.
Synlett
1998,
313
<A NAME="RU13703ST-20">20</A>
The relative stereochemistry between C5 and C9 of 4 was confirmed by NOE experiments. Compound 4: Colorless oil, [α]D
25 = -14.2 (c 0.35, CHCl3). 1H NMR (400 MHz, CDCl3) δ = 7.65-7.68 (m, 4 H), 7.47 (s, 1 H), 7.37-7.40 (m, 6 H), 4.72 (d, J = 5.4 Hz, 2 H), 4.72 (s, 2 H), 4.27 (d, J = 10.8 Hz, 1 H), 4.02 (app q, J = 6.0 Hz, 1 H), 3.93 (app q, J = 6.0 Hz, 1 H), 3.67-3.83 (m, 3 H), 3.49-3.55 (m, 1 H), 2.36 (br s, 1 H), 2.35 (br
s, 1 H), 2.12-2.16 (m, 1 H), 1.95-2.07 (m, 3 H), 1.88-1.92 (m, 1 H), 1.79-1.85 (m,
1 H), 1.62-1.70 (m, 1 H), 1.48-1.54 (m, 2 H), 1.20-1.33 (m, 1 H), 1.04 (s, 9 H), 0.89
(s, 9 H), 0.86 (s, 9 H), 0.09 (s, 6 H), 0.034 (s, 3 H), 0.028 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 162.4, 142.2, 141.8, 135.7, 135.2, 135.0, 134.0, 129.7, 127.8, 127.7, 110.4,
73.0, 71.4, 69.0, 68.7, 68.6, 60.7, 58.5, 41.2, 40.8, 40.0, 39.6, 39.6, 39.4, 36.5,
27.0, 26.7, 25.9, 19.3 (3 C), 18.5 (3 C), 18.1 (3 C), -4.4 (2 C), -5.3 (2 C). IR (cm-1): 3073, 1655, 1093, 1112. HRMS (ESI) calcd for C46H73O6NSi3Na (M + Na)+: 842.4633, found: 842.4638.