Klin Monbl Augenheilkd 2003; 220(8): 521-525
DOI: 10.1055/s-2003-41872
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Entstehungsmechanismen des diabetischen Makulaödems

Pathogenesis of Diabetic Macular OedemaTim  U.  Krohne1 , Sascha  Fauser1 , Bernd  Kirchhof1 , Antonia  M.  Joussen1
  • 1Abteilung für Netzhaut- und Glaskörperchirurgie des Zentrums für Augenheilkunde und Zentrum für Molekulare Medizin (ZMMK), Universität zu Köln
Gefördert durch DFG Jo 324/4-1, Jo 324/6-1 (Emmy Noether), ZMMK Köln (TV76), Ernst und Berta Grimmke Stiftung und Gertrud und Werner Müller Stiftung
Further Information

Publication History

Eingegangen: 10. Juni 2003

Angenommen: 14. Juli 2003

Publication Date:
03 September 2003 (online)

Zusammenfassung

Hyperglykämie führt zu einer Schädigung der Blut-Retina-Schranke mit der Folge einer Ödembildung des Netzhautgewebes und dadurch bedingter Visusminderung. Für die Schrankenstörung sind drei Hauptmechanismen verantwortlich: die erhöhte parazelluläre Permeabilität des Gefäßendothels aufgrund veränderter Zell-Zell-Verbindungen, der Verlust der Endothelintegrität durch den Untergang von Endothelzellen und die Steigerung des transzellulären Transports durch die Endothelzellschicht. Diese Übersicht befasst sich mit den molekularen Grundlagen dieser Mechanismen und erläutert die Rolle von Zytokinen und zellulären Interaktionen bei der Schädigung der Blut-Retina-Schranke.

Abstract

Hyperglycaemia causes breakdown of the blood retina barrier leading to formation of macular oedema and consecutive visual loss. Three major mechanisms are involved in barrier breakdown: increased paracellular permeability of vascular endothelium due to disruption of cell junctions, loss of endothelial cell layer integrity due to cell destruction, and increased transcellular transport through the endothelium. This review focusses on the molecular basis of these mechanisms and discusses the role of cytokines and cellular interactions in blood retina barrier breakdown.

Literatur

  • 1 Abrass C K. Measurement of the rates of basal pinocytosis of horseradish peroxidase and internalization of heat-aggregated IgG by macrophages from normal and streptozotocin-induced diabetic rats.  Immunology. 1988;  65 411-415
  • 2 Antonetti D A, Barber A J, Khin S, Lieth E, Tarbell J M, Gardner T W. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group.  Diabetes. 1998;  47 1953-1959
  • 3 Antonetti D A, Wolpert E B, DeMaio L, Harhaj N S, Scaduto R C. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin.  J Neurochem. 2002;  80 667-677
  • 4 Barber A J, Antonetti D A, Gardner T W. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group.  Invest Ophthalmol Vis Sci. 2000;  41 3561-3568
  • 5 Barouch F C, Miyamoto K, Allport J R, Fujita K, Bursell S E, Aiello L P. et al . Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes.  Invest Ophthalmol Vis Sci. 2000;  41 1153-1158
  • 6 Brownlee M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 7 Bursell S E, Delori F C, Yoshida A, Parker J S, Collas G D, McMeel J W. Vitreous fluorophotometric evaluation of diabetics.  Invest Ophthalmol Vis Sci. 1984;  25 703-710
  • 8 Davidson M K, Russ P K, Glick G G, Hoffman L H, Chang M S, Haselton F R. Reduced expression of the adherens junction protein cadherin-5 in a diabetic retina.  Am J Ophthalmol. 2000;  129 267-269
  • 9 Engerman R L. Pathogenesis of diabetic retinopathy.  Diabetes. 1989;  38 1203-1206
  • 10 Fitzgerald M E, Caldwell R B. The retinal microvasculature of spontaneously diabetic BB rats: structure and luminal surface properties.  Microvasc Res. 1990;  39 15-27
  • 11 Gumbiner B M. Regulation of cadherin adhesive activity.  J Cell Biol. 2000;  148 399-404
  • 12 Hammes H P, Lin J, Bretzel R G, Brownlee M, Breier G. Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat.  Diabetes. 1998;  47 401-406
  • 13 Hofman P, Blaauwgeers H G, Tolentino M J, Adamis A P, Nunes Cardozo B J, Vrensen G F. et al . VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A.  Curr Eye Res. 2000;  21 637-645
  • 14 Jonas J B, Sofker A. Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema.  Am J Ophthalmol. 2001;  132 425-427
  • 15 Joussen A M, Fauser S, Krohne T U, Lemmen K D, Lang G E, Kirchhof B. Diabetische Retinopathie: Pathophysiologie einer Hypoxie-induzierten Entzündung.  Ophthalmologe. 2003;  100 363-370
  • 16 Joussen A M, Murata T, Tsujikawa A, Kirchhof B, Bursell S E, Adamis A P. Leukocyte-mediated endothelial cell injury and death in the diabetic retina.  Am J Pathol. 2001;  158 147-152
  • 17 Joussen A M, Poulaki V, Mitsiades N, Cai W Y, Suzuma I, Pak J. et al . Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes.  FASEB J. 2003;  17 76-78
  • 18 Joussen A M, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand S J. et al . Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo.  Am J Pathol. 2002;  160 501-509
  • 19 Joussen A M, Poulaki V, Tsujikawa A, Qin W, Qaum T, Xu Q. et al . Suppression of diabetic retinopathy with angiopoietin-1.  Am J Pathol. 2002;  160 1683-1693
  • 20 Keck P J, Hauser S D, Krivi G, Sanzo K, Warren T, Feder J. et al . Vascular permeability factor, an endothelial cell mitogen related to PDGF.  Science. 1989;  246 1309-1312
  • 21 Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier.  Cell Mol Neurobiol. 2000;  20 57-76
  • 22 Koyano S, Araie M, Eguchi S. Movement of fluorescein and its glucuronide across retinal pigment epithelium-choroid.  Invest Ophthalmol Vis Sci. 1993;  34 531-538
  • 23 Krogsaa B, Lund-Andersen H, Mehlsen J, Sestoft L, Larsen J. The blood-retinal barrier permeability in diabetic patients.  Acta Ophthalmol (Copenh). 1981;  59 689-694
  • 24 Martidis A, Duker J S, Greenberg P B, Rogers A H, Puliafito C A, Reichel E. et al . Intravitreal triamcinolone for refractory diabetic macular edema.  Ophthalmology. 2002;  109 920-927
  • 25 Miyamoto K, Khosrof S, Bursell S E, Moromizato Y, Aiello L P, Ogura Y. et al . Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1).  Am J Pathol. 2000;  156 1733-1739
  • 26 Miyamoto K, Khosrof S, Bursell S E, Rohan R, Murata T, Clermont A C. et al . Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition.  Proc Natl Acad Sci USA. 1999;  96 10836-10841
  • 27 Murata T, Ishibashi T, Inomata H. Immunohistochemical detection of blood-retinal barrier breakdown in streptozotocin-diabetic rats.  Graefes Arch Clin Exp Ophthalmol. 1993;  231 175-177
  • 28 Nagata S. Apoptosis by death factor.  Cell. 1997;  88 355-365
  • 29 Qaum T, Xu Q, Joussen A M, Clemens M W, Qin W, Miyamoto K. et al . VEGF-initiated blood-retinal barrier breakdown in early diabetes.  Invest Ophthalmol Vis Sci. 2001;  42 2408-2413
  • 30 Russ P K, Davidson M K, Hoffman L H, Haselton F R. Partial characterization of the human retinal endothelial cell tight and adherens junction complexes.  Invest Ophthalmol Vis Sci. 1998;  39 2479-2485
  • 31 Sander B, Larsen M, Moldow B, Lund-Andersen H. Diabetic macular edema: passive and active transport of fluorescein through the blood-retina barrier.  Invest Ophthalmol Vis Sci. 2001;  42 433-438
  • 32 Schroder S, Palinski W, Schmid-Schonbein G W. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy.  Am J Pathol. 1991;  139 81-100
  • 33 Senger D R, Water L van de, Brown L F, Nagy J A, Yeo K T, Yeo T K. et al . Vascular permeability factor (VPF, VEGF) in tumor biology.  Cancer Metastasis Rev. 1993;  12 303-324
  • 34 Vestweber D. Molecular mechanisms that control endothelial cell contacts.  J Pathol. 2000;  190 281-291
  • 35 Vinores S A, Derevjanik N L, Ozaki H, Okamoto N, Campochiaro P A. Cellular mechanisms of blood-retinal barrier dysfunction in macular edema.  Doc Ophthalmol. 1999;  97 217-228
  • 36 Vinores S A, McGehee R, Lee A, Gadegbeku C, Campochiaro P A. Ultrastructural localization of blood-retinal barrier breakdown in diabetic and galactosemic rats.  J Histochem Cytochem. 1990;  38 1341-1352
  • 37 Weinberger D, Fink-Cohen S, Gaton D D, Priel E, Yassur Y. Non-retinovascular leakage in diabetic maculopathy.  Br J Ophthalmol. 1995;  79 728-731
  • 38 Westlin W F, Gimbrone M A. Neutrophil-mediated damage to human vascular endothelium. Role of cytokine activation.  Am J Pathol. 1993;  142 117-128
  • 39 Yagi T, Takeichi M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity.  Genes Dev. 2000;  14 1169-1180
  • 40 Limb G A, Chignell A H, Green W, LeRoy F, Dumonde D C. Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy.  Br J Ophthalmol. 1996;  80 168-173

PD Dr. Antonia M. Joussen

Abteilung für Netzhaut- und Glaskörperchirurgie · Zentrum für Augenheilkunde

Joseph-Stelzmann-Straße 9

50931 Köln

Email: JoussenA@aol.com

URL: http://www.retina-cologne.de

    >