Zusammenfassung
Hintergrund: Ziel unserer Studie war, die Unterschiede des PO2 in der Sehnervenpapille während Normoxie und Hyperoxie (100 % O2 ), vor und nach intravenöser Verabreichung von Acetazolamid auszuwerten. Material und Methoden: PO2 -Messungen wurden in den intervaskulären Gebieten der Sehnervenpapillen von 11 anästhesierten
Miniaturschweinen vorgenommen. Dazu wurden sauerstoffsensible Mikroelektroden mithilfe
eines Mikromanipulators durch den Glaskörper eingeführt. Der PO2 wurde 10 Minuten kontinuierlich gemessen, unter systemischer Normoxie und systemischer
Hyperoxie. Nach intravenöser Verabreichung von Acetazolamid (als Bolus von 500 mg)
wurden die Sauerstoffmessungen unter den genannten Bedingungen wiederholt. Ergebnisse: Unter systemischer Hyperoxie stieg der PO2 in der Sehnervenpapille leicht an (ΔPO2 = 4,7 ± 2,5 mmHg; p < 0,001; n = 11). Ebenso erhöhte sich der systemische PaO2 . Acetazolamid führte zu einer langsam zunehmenden Erhöhung des PO2 in der Sehnervenpapille (ΔPO2 = 2,1 ± 1,7 mmHg; p > 0,1; n = 8 nach 10 Minuten und ΔPO2 = 4,3 ± 3,2 mmHg; p < 0,05; n = 6 nach 30 Minuten). Ebenso verhielt sich der systemische
PaCO2 . Der PO2 in der Sehnervenpapille erhöhte sich deutlich signifikanter nach Injektion von Acetazolamid
(ΔPO2 = 13,3 ± 3,1 mmHg; p < 0,001; n = 8). Schlussfolgerungen: Eine systemische Hyperoxie reicht alleine nicht aus, um den PO2 in der Sehnervenpapille von Miniaturschweinen aufgrund eines vasokonstriktorischen
Effekts substanziell zu erhöhen. Intravenöse Injektion von Acetazolamid kann den PO2 in der Sehnervenpapille kontinuierlich erhöhen aufgrund eines postulierten vasodilatatorischen
Effekts des erhöhten systemischen PaCO2 . Die Kombination einer Acetazolamid-Injektion mit einer systemischen Hyperoxie kann
die Sauerstoffversorgung der Sehnervenpapille stark verbessern.
Abstract
Background: The purpose of our study was to evaluate the variations of the optic disc PO2 during normoxia and hyperoxia (100 % O2 ), before and after intravenous administration of acetazolamide. Material and Methods: PO2 measurements were obtained at intervascular areas of the optic disc in 11 anaesthetized
miniature pigs using oxygen-sensitive microelectrodes introduced through the vitreous
cavity by a micromanipulator. PO2 was measured continuously during 10 minutes under systemic normoxia and systemic
hyperoxia. Oxygen measurements were repeated under these conditions after intravenous
injection of acetazolamide (bolus of 500 mg) in 8 animals. Results: In systemic hyperoxia, the optic disc PO2 increased moderately (ΔPO2 = 4.7 ± 2.5 mmHg; p < 0.001; n = 11) in parallel with systemic PaO2 . Acetazolamide led to a slow and progressive increase in the optic disc PO2 (ΔPO2 = 2.1 ± 1.7 mmHg; p > 0.1; n = 8 after 10 min, while ΔPO2 = 4.3 ± 3.2 mmHg; p < 0.05; n = 8 after 30 min), in parallel with a slow and progressive
increase in systemic PaCO2 . The optic disc PO2 increased much more significantly after injection of acetazolamide under systemic
hyperoxia (ΔPO2 = 13.3 ± 3.1 mmHg; p < 0.001; n = 8). Conclusions: Systemic hyperoxia alone is not sufficient to increase substantially the optic disc
PO2 in miniature pigs due to a vasoconstrictor effect. Intravenous injection of acetazolamide
can increase the optic disc PO2 progressively, due to a vasodilatory effect of elevated systemic PaCO2 . The association of acetazolamide injection with systemic hyperoxia can further improve
the oxygenation of the optic disc.
Schlüsselwörter
Acetazolamid - Hyperoxie - Normoxie - Sauerstoffdruck - Sehnervenpapille - Miniaturschweine
Key words
Acetazolamide - hyperoxia - normoxia - partial pressure of oxygen - optic disc - miniature
pigs
References
1
Ahmed J, Linsenmeier R A, Dunn R Jr.
The oxygen distribution in the prelaminar optic nerve head of the cat.
Exp Eye Res.
1994;
59
457-465
2
Bouzas E A, Donati G, Pournaras C J.
Distribution and regulation of the optic nerve head tissue PO2 .
Surv Ophthalmol.
1997;
42 (Suppl. 1)
27-34
3
Cranstoun S D, Riva C E, Munoz J L. et al .
Continuous measurements of intra-vascular pO2 in the pig optic nerve head.
Klin Monatsbl Augenheilkd.
1997;
210
313-315
4
Dahl A, Russell D, Nyberg-Hansen R. et al .
Cerebral vasoreactivity in unilateral carotid artery disease. A comparison of blood
flow velocity and regional cerebral blood flow measurements.
Stroke.
1994;
25
621-626
5
Dallinger S, Bobr B, Findl O. et al .
Effects of acetazolamide on choroidal blood flow.
Stroke.
1998;
29
997-1001
6
Dunn J F, O’Hara J A, Zaim-Wadghiri Y. et al .
Changes in oxygenation of intracranial tumors with carbogen: a BOLD MRI and EPR oximetry
study.
J Magn Reson Imaging.
2002;
16
511-521
7
Ernest J T.
In vivo measurement of optic disk oxygen tension.
Invest Ophthalmol.
1973;
12
927-931
8
Ernest J T.
Optic disk oxygen tension.
Exp Eye Res.
1977;
24
271-278
9
Findl O, Hansen R M, Fulton A B.
The effects of acetazolamide on the electroretinographic responses in rats.
Invest Ophthalmol Vis Sci.
1995;
36
1019-1026
10
Harris A, Arend O, Wolf S. et al .
CO2 dependence of retinal arterial and capillary blood velocity.
Acta Ophthalmol Scand.
1995;
73
421-424
11
Hayreh S S, Zimmerman M B, Podhajsky P. et al .
The role of nocturnal hypotension in ocular and optic nerve ischemic disorders.
Invest Ophthalmol Vis Sci.
1993;
34
994-999
12
Hosking S L, Evans D W, Embleton S J. et al .
Hypercapnia invokes an acute loss of contrast sensitivity in untreated glaucoma patients.
Br J Ophthalmol.
2001;
85
1352-1356
13
Müller M, Voges M, Piepgras U. et al .
Assessment of cerebral vasomotor reactivity by transcranial Doppler ultrasound and
breath-holding. A comparison with acetazolamide as vasodilatory stimulus.
Stroke.
1995;
26
96-100
14
Piepgras A, Schmiedek P, Leinsinger G. et al .
A simple test to assess cerebrovascular reserve capacity using transcranial Doppler
sonography and acetazolamide.
Stroke.
1990;
21
1306-1311
15
Pillunat L E, Stodtmeister R, Willmans I. et al .
Autoregulation of ocular blood flow during changes in intraocular pressure: preliminary
results.
Graefes Arch Clin Exp Ophthalmol.
1985;
223
219-223
16
Pournaras C, Tsacopoulos M.
L’effet du CO2 sur l’ERG local enregistré au moyen d’une micro-électrode dans les couches synaptiques
de la rétine de la grenouille (Rana ridibunda).
Klin Monatsbl Augenheilkd.
1980;
176
524-528
17
Pournaras C J, Munoz J L, Abdesselem R.
Régulation de la PO2 au niveau de la papille du porc miniature en hypoxie.
Klin Monatsbl Augenheilkd.
1991;
198
404-405
18
Pournaras J AC, Poitry S, Munoz J L. et al .
Occlusion veineuse rétinienne expérimentale: Effet de l’inhalation de carbogène sur
la PO2 prérétinienne.
J Fr Ophtalmol.
2003 (in press);
19
Pournaras K I, Karwoski C J, Tsacopoulos M.
L’effet du CO2 sur l’activité du K + extracellulaire au niveau de la couche plexiforme interne de
la rétine isolée de la grenouille (Rana ridibunda).
Klin Monatsbl Augenheilkd.
1982;
180
339-340
20
Rassam S M, Patel V, Kohner E M.
The effect of acetazolamide on the retinal circulation.
Eye.
1993;
7
697-702
21
Ringelstein E B, Van Eyck S, Mertens I.
Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison
of CO2 to acetazolamide.
J Cereb Blood Flow Metab.
1992;
12
162-168
22
Rootman J.
Vascular system of the optic nerve head and retina in the pig.
Br J Ophthalmol.
1971;
55
808-819
23
Stefansson E, Jensen P K, Eysteinsson T. et al .
Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors.
Invest Ophthalmol Vis Sci.
1999;
40
2756-2761
24
Taki K, Kato H, Endo S. et al .
Cascade of acetazolamide-induced vasodilatation.
Res Commun Mol Pathol Pharmacol.
1999;
103
240-248
25
Tsacopoulos M, Baker R, Hamasaki D. et al .
Proceedings: Studies on retinal blood flow regulation: the effect of PaCO2 on blood flow, oxygen availability, oxygen consumption rate and ERG in monkeys.
Exp Eye Res.
1973;
17
391
26
Tsacopoulos M, David N J.
The effect of arterial PCO2 on relative retinal blood flow in monkeys.
Invest Ophthalmol.
1973;
12
335-347
27
Tsacopoulos M, Levy S.
Intraretinal acid-base studies using pH glass microelectrodes: effect of respiratory
and metabolic acidosis and alkalosis on inner-retinal pH.
Exp Eye Res.
1976;
23
495-504
28
Vorstrup S, Henriksen L, Paulson O B.
Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen.
J Clin Invest.
1984;
74
1634-1639
Dr. Constantin J. Pournaras
HUG - Service d’Ophtalmologie
22, rue Alcide-Jentzer
1211 Geneva 14
Switzerland
Phone: + 41-22-382-8394
Fax: + 41-22-382-8421
Email: constantin.pournaras@hcuge.ch