Am J Perinatol 2004; 21(4): 209-216
DOI: 10.1055/s-2004-828610
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Oxidative and Inflammatory Parameters in Respiratory Distress Syndrome of Preterm Newborns: Beneficial Effects of Melatonin

Eloisa Gitto1 , Russel J. Reiter2 , Stefania P. Cordaro1 , Mariangela La Rosa1 , Pietro Chiurazzi1 , Giuseppe Trimarchi3 , Placido Gitto1 , Maria P. Calabró1 , Ignazio Barberi1
  • 1Institute of Medical Pediatrics, Neonatal Intensive Care Unit, University of Messina, Italy
  • 2Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio Texas
  • 3Department of Statistics, University of Messina, Italy
Further Information

Publication History

Publication Date:
28 May 2004 (online)

Reactive oxygen species play an important role in the pathogenesis of respiratory distress syndrome and its complications. This study was conducted to determine if treatment with the antioxidant melatonin would influence interleukin-6, interleukin-8, tumor necrosis factor α, and nitrite/nitrate levels in newborns with grade III or IV respiratory distress syndrome (radiographically confirmed) diagnosed within the first 6 hours of life. Prior to treatment, a blood sample was collected from the umbilical cord or a peripheral vein of each newborn. Second, third, and fourth blood samples were collected at 24 hours, 72 hours, and 7 days, respectively, after beginning treatment with melatonin or placebo. Compared with the melatonin-treated respiratory distress syndrome newborns, in the untreated infants the concentrations of interleukin-6, interleukin-8, and tumor necrosis factor α were significantly higher at 24 hours, 72 hours, and at 7 days after onset of the study. in addition, nitrite/nitrate levels at all time points were higher in the untreated respiratory distress syndrome newborns than in the melatonin-treated babies. Following melatonin administration, nitrite/nitrate levels decreased significantly, whereas they remained high and increased further in the respiratory distress syndrome infants not given melatonin.


  • 1 Mariani G L, Carlo W A. Ventilatory management in neonates: science of arts?.  Clin Perinatol. 1998;  25 33-48
  • 2 Boda D, Nemeth I, Pinter S. Surface tension, glutathione content and redox ratio of the tracheal aspirate fluid of premature infants with IRDS.  Biol Neonate. 1998;  74 281-288
  • 3 Esteban J, Morcillo J E, Cortjo J. Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants.  Pharmacol Res. 1999;  40 393-404
  • 4 Bhandari V, Mauli K N, Kresch M. Hyperoxia causes an increase in antioxidant enzyme activity in adult and fetal rat type II pneumocytes.  Lung. 2000;  178 53-60
  • 5 Ikegami M, Kallapur S, Michna J, Jobe A H. Lung injury and surfactant metabolism after hyperventilation of premature lambs.  Pediatr Res. 2000;  47 398-404
  • 6 Jonsson B, Tullus K, Brauner A, Lu Y, Noack G. Early increase of TNF-alpha and IL-6 in tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm infants.  Arch Dis Child Fetal Neonatal Ed. 1997;  77 F198-F201
  • 7 Kwong K Y, Jones C A, Cayabyab R et al.. Differential regulation of IL-8 by IL-1-beta and TNF-alpha in hyaline membrane disease.  J Clin Immunol. 1998;  18 71-80
  • 8 Kwong K Y, Jones C A, Cayabyab R et al.. The effects of IL-10 on proinflammatory cytokine expression (IL-beta and IL-8) in hyaline membrane disease (HMD).  Clin Immunol Immunopathol. 1998;  88 105-113
  • 9 Literat A, Su F, Norwicki M et al.. Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease (HMD).  Life Sci. 2001;  70 253-267
  • 10 Buron E, Garrote J A, Arranz E, Oyaguez P, Fernandez Calvo J L, Blanco Quiros A. Markers of pulmonary inflammation in tracheobronchial fluid of premature infants with respiratory distress syndrome.  Allergol Immunopathol (Madr). 1999;  27 11-17
  • 11 Dobyns E L, Eells P L, Griebel J L, Abman S H. Elevated plasma endothelin-1 and cytokine levels in children with severe acute respiratory distress syndrome.  J Pediatr. 1999;  135 246-249
  • 12 Huang H C, Yang M Y, Huang C B, Yang K D. Profiles of inflammatory cytokines in bronchoalveolar lavage fluid from premature infants with respiratory distress disease.  J Microbiol Immunol Infect. 2000;  33 19-24
  • 13 Jonsson B, Li Y H, Noack G, Brauner A, Tullus K. Downregulatory cytokines in tracheobronchial aspirate fluid from infants with chronic lung disease of prematurity.  Acta Paediatr. 2000;  89 1375-1380
  • 14 Gahler A, Stallmach T, Schwaller J, Fey M F, Tobler A. Interleukin-8 expression by fetal and neonatal pulmonary cells in hyaline membrane disease and amniotic infection.  Pediatr Res. 2000;  48 299-303
  • 15 Takasaki J, Ogawa Y. Anti-interleukin-8 autoantibody in the tracheobronchial aspirate of infants with chronic lung disease.  Pediatr Int. 2001;  43 48-52
  • 16 Moncada S, Palmer R MJ, Higgs E A. Nitric oxide: physiology, pathophysiology and pharmacology.  Pharmacol Rev. 1991;  43 109-142
  • 17 Reiter R J, Tan D X, Sainz R M, Mayo J C, Lopez-Burillo S. Melatonin: reducing the toxicity and increasing the efficacy of drugs.  J Pharm Pharmacol. 2002;  54 1299-1321
  • 18 Allegra M, Reiter R J, Tan D X, Gentile C, Tesoriere L, Livrea M A. The chemistry of melatonin's interaction with reactive species.  J Pineal Res. 2003;  34 1-10
  • 19 Molina-Carballo A, Munoz-Hoyos A, Reiter R J et al.. Utility of high doses of melatonin as adjunctive anticonvulsant therapy in a child with severe myoclonic epilepsy: two years' experience.  J Pineal Res. 1997;  23 97-105
  • 20 Jan J E, Hamilton D, Seward N, Fast D K, Freeman R D, Laudon M. Clinical trials of control release melatonin in children with sleep-wake cycle disorders.  J Pineal Res. 2000;  29 34-39
  • 21 Fulia F, Gitto E, Cuzzocrea S et al.. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin.  J Pineal Res. 2001;  31 343-349
  • 22 Gitto E, Karbownik M, Reiter R J et al.. Effects of melatonin treatment in septic newborns.  Pediatr Res. 2001;  50 756-760
  • 23 Cuzzocrea S, Reiter R J. Pharmacological actions of melatonin in acute and chronic inflammation.  Curr Top Med Chem. 2002;  2 153-165
  • 24 Cuzzocrea S, Tan D X, Costantino G, Mazzon E, Caputi A P, Reiter R J. The protective role of endogenous melatonin in carrageenan-induced pleurisy in the rat.  FASEB J. 1999;  13 1930-1938
  • 25 Banks B A, Ischiropoulos H, McClelland M, Ballard P L, Ballard R A. Plasma 3-nitrotyrosine is elevated in premature infants who develop bronchopulmonary dysplasia.  Pediatrics. 1998;  101 870-874
  • 26 Dellinger R P. Inhaled nitric oxide in acute lung injury and acute respiratory distress syndrome. Inability to translate physiologic benefit to clinical outcome benefit in adult clinical trials.  Intensive Care Med. 1999;  25 881-883
  • 27 Janssen Y MW, Soultanakis R, Steece K et al.. Depletion of nitric oxide causes cell cycle alterations, apoptosis and oxidative stress in pulmonary cells.  Am J Physiol. 1998;  275 L1100-L1109
  • 28 Baeuerle P A, Rupec R A, Pahl H L. Reactive oxygen intermediates as second messages of a general pathogen response.  Pathol Biol (Paris). 1996;  44 29-35
  • 29 Deaton P R, McKellar C T, Culbreth R, Veal C F, Cooper J A. Hyperoxia stimulates interleukin-8 release from alveolar macrophages and U 937 cells: attenuation by dexamethasone.  Am J Physiol. 1994;  267 L187-L192
  • 30 DeForge L E, Preston A M, Takeuchi E, Kenney J, Boxer L A, Remick D G. Regulation of interleukin 8 gene expression by oxidant stress.  J Biol Chem. 1993;  268 25568-25576
  • 31 Desmarquest P, Chadelat K, Corroyer S, Cazals V, Clement A. Effect of hyperoxia on human macrophage cytokine response.  Respir Med. 1998;  92 951-960
  • 32 Schibler K R, Liechty K W, White W L, Rothstein G, Christensen R D. Defective production of interleukin-6 by monocytes: a possible mechanism underlying several host deficiencies of neonates.  Pediatr Res. 1992;  31 18-21
  • 33 Rowen J L, Smith C W, Edwards M S. Group B streptococci leukotriene B4 and interleukin-8 from human monocytes: neonates exhibit a diminished response.  J Infect Dis. 1995;  172 420-426
  • 34 Schultz C, Rott C, Temming P, Schlenke P, Möller J C, Bucsky P. Enhanced interleukin-6 and interleukin-8 synthesis in term and preterm infants.  Pediatr Res. 2002;  51 317-322
  • 35 Reiter R J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions.  Endocr Rev. 1991;  12 151-180
  • 36 Pei Z, Pang S F, Chung R TF. Pretreatment with melatonin reduces volume of cerebral infarction in rat middle cerebral artery occlusion stroke model.  J Pineal Res. 2002;  32 168-172
  • 37 Bromme H J, Morke W, Peschke E. Transformation of barbituric acid into alloxan by hydroxyl radicals: interaction with melatonin and with other hydroxy radical scavengers.  J Pineal Res. 2002;  33 239-247
  • 38 Tan D X, Reiter R J, Manchester L C et al.. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger.  Curr Top Med Chem. 2002;  2 181-197
  • 39 Tan D X, Chen L D, Poeggeler B, Manchester L C, Reiter R J. Melatonin: a potent, endogenous hydroxyl radical scavenger.  Endocr J. 1993;  1 57-60
  • 40 Reiter R J, Tang L, Garcia J J, Munoz-Hoyos A. Pharmacological actions of melatonin in free radical pathophysiology.  Life Sci. 1997;  60 2255-2271
  • 41 Reiter R J, Tan D X, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress: a review.  J Biomed Sci. 2000;  7 444-458
  • 42 Reiter R J. Melatonin: lowering the high price of free radicals.  News Physiol Sci. 2000;  15 246-250
  • 43 Bandyopadhyay D, Biswas K, Bandyopadhyay U, Reiter R J, Banerjee R K. Melatonin protects against stress-induced lesions by scavenging the hydroxyl radical.  J Pineal Res. 2000;  29 143-159
  • 44 Cuzzocrea S, Costantino G, Caputi A P. Protective effect of melatonin on cellular energy depletion mediated by peroxynitrite and poly (ADP-ribose) synthetase activation in a non-septic shock model induced by zymosan in the rat.  J Pineal Res. 1998;  25 78-85
  • 45 Tan D X, Manchester L C, Reiter R J, Qi W, Karbownik M, Calvo J R. Significance of melatonin in antioxidative defence system: Reactions and products.  Biol Signals Recept. 2000;  9 137-159
  • 46 Urata Y, Homma S, Goto S et al.. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells.  Free Radic Biol Med. 1999;  27 838-847
  • 47 Acuña-Castroviejo D, Martin M, Macias M et al.. Melatonin, mitochondria and cellular bioenergetics.  J Pineal Res. 2001;  30 65-74
  • 48 Okatani Y, Wakatsuki A, Reiter R J, Miyahara Y. Hepatic mitochondrial dysfunction in senescence-accelerated mice: correction by long-term, orally administered physiological levels of melatonin.  J Pineal Res. 2002;  33 127-133

Russel J ReiterPh.D. 

Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio

Mail Code 7762, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900