Zusammenfassung
Die Atherosklerose weist wesentliche Charakteristika einer lokalen Inflammation auf
und ist von einer geringgradigen systemischen inflammatorischen Antwort begleitet.
Zahlreiche prospektive Studien bei initial gesunden Personen, aber auch bei Patienten
mit bereits klinisch manifester Atherosklerose zeigen eine starke, unabhängige Beziehung
zwischen nur geringgradig erhöhten Konzentrationen verschiedener systemischer Inflammationsmarker
(Plasmaviskosität, C-reaktives Protein [CRP] oder anderen Akute-Phase-Reaktanten)
und verschiedenen kardiovaskulären Endpunkten. Derzeit liegen die umfangreichsten
und konsistentesten Daten für CRP vor. Erste Ergebnisse zeigen, dass CRP in der Lage
ist, die im Framingham-Risiko-Score enthaltene Information zu modifizieren und unlängst
veröffentlichte Richtlinien von AHA/CDC empfehlen die Bestimmung von CRP bei asymptomatischen
Personen mit mittlerem Risiko (10-Jahresrisiko zwischen 10 und 20 %) und bei ausgewählten
Patienten nach einem akuten Koronarsyndrom. Derzeit wird in einer großen randomisierten
Therapiestudie der Frage nachgegangen, ob erhöhte CRP-Spiegel eventuell ein zusätzliches
Kriterium zur Statin-Behandlung von Personen mit normalem LDL-Cholesterin darstellen.
Forschungsergebnisse der letzten Jahre legen nahe, dass CRP möglicherweise nicht nur
ein kardiovaskulärer Risikomarker ist, sondern direkt in den Prozess der Atherogenese
involviert ist. Letztlich wird derzeit eine Fülle weiterer inflammatorischer Biomarker
daraufhin untersucht, ob sie die Prädiktion kardiovaskulärer Ereignisse bei verschiedenen
Personengruppen verbessern können. Wir haben im Rahmen der MONICA/KORA-Studien die
Assoziation einer Reihe derartiger Biomarker mit klassischen kardiovaskulären Risikofaktoren
und mit koronaren Ereignissen untersucht.
Abstract
Atherosclerosis is characterised by a non-specific local inflammatory process accompanied
by a systemic response. A number of prospective studies in initially healthy subjects
and in patients with manifest atherosclerosis have now convincingly demonstrated a
strong and independent association between even slightly elevated concentrations of
various systemic markers of inflammation (plasma viscosity, C-reactive protein [CRP],
and other acute phase reactants) and a number of cardiovascular endpoints. Presently,
CRP, the classical acute phase protein, seems to be the marker of choice for the clinical
situation. Initial evidence suggests that measurement of CRP adds to global risk assessment
based on the Framingham risk score. The recent AHA/CDC consensus report recommends
the measurement of CRP in asymptomatic subjects at intermediate risk for future coronary
events (10-year risk of 10 - 20 %) and in selected patients after an acute coronary
syndrome. Whether CRP shall alter treatment strategies in subjects without clinically
manifest atherosclerosis is presently being tested in a large randomised clinical
trial. In addition, recent research has suggested that CRP may not only be a risk
marker, but may be directly involved in the pathogenesis of atherothrombosis. However,
there are other emerging biomarkers. Lipoprotein-associated phospholipase A2 (Lp-PLA2 ), an enzyme produced by monocytes/macrophages, T-cells and mast cells was found to
generate proinflammatory and proatherogenic molecules from oxidised LDL. We tested
the association of these new biomarkers with traditional risk factors and their ability
to predict incident coronary events, using the MONICA/KORA database.
Schlüsselwörter
Inflammation - Biomarker - koronare Ereignisse - Querschnittsstudien - prospektive
Studien
Key words
Inflammation - biomarkers - coronary events - cross-sectional studies - prospective
studies
References
1
Ross R.
Atherosclerosis - An inflammatory disease.
N Engl J Med.
1999;
340
115-126
2
van der Wal A C, Becker A E, van der Loos C M. et al .
Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques
is characterized by an inflammatory process irrespective of the dominant plaque morphology.
Circulation.
1994;
89
36-44
3
Torzewski J, Torzewski M, Bowyer D E. et al .
C-reactive protein frequently colocalizes with the terminal complement complex in
the intima of early atherosclerotic lesions of human coronary arteries.
Arterioscler Thromb Vasc Biol.
1998;
18
1386-1392
4
Libby P.
Molecular bases of acute coronary syndromes.
Circulation.
1995;
91
2844-2850
5
Ridker P M, Glynn R J, Hennekens C H.
C-reactive protein adds to the predictive value of total and HDL cholesterol in determining
risk of first myocardial infarction.
Circulation.
1998;
97
2007-2011
6
Koenig W, Sund M, Filipiak B. et al .
Plasma viscosity and the risk of coronary heart disease: results from the MONICA-Augsburg
Cohort Study, 1984 to 1992.
Arterioscler Thromb Vasc Biol.
1998;
18
768-772
7
Koenig W, Sund M, Lowe G D. et al .
Geographical variations in plasma viscosity and relation to coronary event rates.
Lancet.
1994;
344
711-714
8
Koenig W, Sund M, Ernst E. et al .
Association between rheology and components of lipoproteins in human blood. Results
from the MONICA project.
Circulation.
1992;
85
2197-2204
9
Ernst E, Koenig W, Matrai A. et al .
Blood rheology in healthy cigarette smokers. Results from the MONICA project, Augsburg.
Arteriosclerosis.
1988;
8
385-388
10
Koenig W, Sund M, Ernst E. et al .
Association between plasma viscosity and blood pressure. Results from the MONICA-project
Augsburg.
Am J Hypertens.
1991;
4
529-536
11
Koenig W, Sund M, Doring A. et al .
Leisure-time physical activity but not work-related physical activity is associated
with decreased plasma viscosity. Results from a large population sample.
Circulation.
1997;
95
335-341
12
Frohlich M, Schunkert H, Hense H W. et al .
Effects of hormone replacement therapies on fibrinogen and plasma viscosity in postmenopausal
women.
Br J Haematol.
1998;
100
577-581
13
Koenig W, Sund M, Lowel H. et al .
Association between plasma viscosity and all-cause mortality: results from the MONICA-Augsburg
Cohort Study 1984 - 92.
Br J Haematol.
2000;
109
453-458
14 Pepys M B. The acute phase response and C-reactive protein. Weatherall DJ, Ledingham
JGG, Warrell DA Oxford Textbook of Medicine Oxford, UK; Oxford University Press 1995:
1527-1533
15
Vigushin D M, Pepys M B, Hawkins P N.
Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in
health and disease.
J Clin Invest.
1993;
91
1351-1357
16 WHO Expert Committee on Biological Standardization .WHO Technical Report Series
760. Geneva, Switzerland; 1987
17
Macy E M, Hayes T E, Tracy R P.
Variability in the measurement of C-reactive protein in healthy subjects: implications
for reference intervals and epidemiological applications.
Clin Chem.
1997;
43
52-58
18
Wilkins J, Gallimore J R, Moore E. et al .
Rapid automated high sensitivity enzyme immunoassay of C-reactive protein.
Clin Chem.
1998;
44
1358-1361
19
Imhof A, Frohlich M, Loewel H. et al .
Distributions of C-reactive protein measured by high-sensitivity assays in apparently
healthy men and women from different populations in Europe.
Clin Chem.
2003;
49
669-672
20
Hutchinson W L, Koenig W, Frohlich M. et al .
Immunoradiometric assay of circulating C-reactive protein: age-related values in the
adult general population.
Clin Chem.
2000;
46
934-938
21
Koenig W, Sund M, Frohlich M. et al .
C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary
heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring
Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to
1992.
Circulation.
1999;
99
237-242
22
Koenig W, Sund M, Frohlich M. et al .
Refinement of the association of serum C-reactive protein concentration and coronary
heart disease risk by correction for within-subject variation over time: the MONICA
Augsburg studies, 1984 and 1987.
Am J Epidemiol.
2003;
158
357-364
23
Koenig W, Lowel H, Baumert J. et al .
C-reactive protein modulates risk prediction based on the Framingham Score: implications
for future risk assessment: results from a large cohort study in southern Germany.
Circulation.
2004;
109
1349-1353
24
Caslake M J, Packard C J.
Lipoprotein-associated phospholipase A2 (platelet-activating factor acetylhydrolase)
and cardiovascular disease.
Curr Opin Lipidol.
2003;
14
347-352
25
Tselepis A D, Chapman J M.
Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated
phospholipase A2, platelet activating factor-acetylhydrolase.
Atherosclerosis.
2002;
Suppl 3
57-58
26
Dada N, Kim N W, Wolfert R L.
Lp-PLA2: an emerging biomarker of coronary heart disease.
Expert Rev Mol Diagn.
2002;
2
17-22
27
Stafforini D M, Elstad M R, McIntyre T M. et al .
Human macrophages secret platelet-activating factor acetylhydrolase.
J Biol Chem.
1990;
265
9682-9687
28
Asano K, Okamoto S, Fukunaga K. et al .
Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma.
Biochem Biophys Res Commun.
1999;
261
511-514
29
Hakkinen T, Luoma J S, Hiltunen M O. et al .
Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase,
is expressed by macrophages in human and rabbit atherosclerotic lesions.
Arterioscler Thromb Vasc Biol.
1999;
19
2909-2917
30
Leach C A, Hickey D M, Ife R J. et al .
Lipoprotein-associated PLA2 inhibition - a novel, non-lipid lowering strategy for
atherosclerosis therapy.
Farmaco.
2001;
56
45-50
31
Caslake M J, Packard C J, Suckling K E. et al .
Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase:
a potential new risk factor for coronary artery disease.
Atherosclerosis.
2000;
150
413-419
32
Boisfer E, Stengel D, Pastier D. et al .
Antioxidant properties of HDL in transgenic mice overexpressing human apolipoprotein
A-II.
J Lipid Res.
2002;
43
732-741
33
Tjoelker L W, Wilder C, Eberhardt C. et al .
Anti-inflammatory properties of a platelet-activating factor acetylhydrolase.
Nature.
1995;
374
549-553
34
Tjoelker L W, Stafforini D M.
Platelet-activating factor acetylhydrolases in health and disease.
Biochim Biophys Acta.
2000;
1488
102-123
35
Quarck R, Des Geest B, Stengel D. et al .
Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase
prevents injury-induced neointima formation and reduces spontaneous atherosclerosis
in apolipoprotein E-deficient mice.
Circulation.
2001;
103
2495-2500
36
Packard C J, O’Reilly D S, Caslake M J. et al .
Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart
disease. West of Scotland Coronary Prevention Study Group.
N Engl J Med.
2000;
343
1148-1155
37
Blake G J, Dada N, Fox J C. et al .
A prospective evaluation of lipoprotein-associated phospholipase A2 levels and the
risk of future cardiovascular events in women.
J Am Coll Cardiol.
2001;
38
1302-1306
38
Ballantyne C M, Hoogeveen R C, Bang H. et al .
Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and
risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis
Risk in Communities (ARIC) study.
Circulation.
2004;
109
837-842
39
Koenig W, Khuseyinova N, Lowel H. et al .
Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary
events by C-reactive protein in apparently healthy middle-aged men from the general
population: results from the 14-year follow-up of a large cohort from southern Germany.
Circulation.
2004;
110
1903-1908
Prof. Dr. Wolfgang Koenig, FESC, FACC
University of Ulm Medical Center, Dept. of Internal Medicine II - Cardiology
Robert-Koch-Straße 8
89081 Ulm
Germany
eMail: wolfgang.koenig@medizin.uni-ulm.de