Aktuelle Ernährungsmedizin 2005; 30(5): 261-272
DOI: 10.1055/s-2005-867009
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Einfluss von Widerstandstraining auf Parameter des Glukosestoffwechsels bei Gesunden, Typ-2-Diabetikern und Individuen mit Anzeichen einer Insulinresistenz

Influence of Resistance Exercise on Parameters of Glucose Metabolism in Healthy, Glucose Impaired and Type 2 Diabetic SubjectsC.  von Loeffelholz1 , G.  Jahreis1
  • 1Institute of Nutrition, Friedrich Schiller University, Jena, Germany
Further Information

Publication History

Publication Date:
30 September 2005 (online)

Zusammenfassung

Ausdauertraining gilt als wichtiger Bestandteil von Therapie und Prävention des Typ-2-Diabetes. Bezüglich des Widerstandstrainings ist die Datenlage dagegen unzureichend. Für eine aktuelle Übersicht wurden relevante Publikationen zu Mechanismen und Auswirkungen von Widerstandstraining im Zusammenhang mit dem Kohlenhydratstoffwechsel identifiziert und ausgewertet. Obwohl z. T. Studien mit einem limitierten Design berücksichtigt werden mussten, spricht die deutliche Mehrheit der Resultate dafür, dass Widerstandstraining Parameter des Glukosestoffwechsels bei Gesunden, Insulinresistenten und Typ-2-Diabetikern positiv beeinflusst. Aspekte des Trainingsaufbaus sind dabei vielfach noch unzureichend untersucht. Clampstudien liefern jedoch deutliche Hinweise, dass im Bereich einer Trainingsintensität von 40 - 60 % der 1RM (Maximalkraft, 1 repetition maximum) und einer Trainingshäufigkeit von 3 - 5 Einheiten pro Woche Verbesserungen der Insulinwirkung in Größenordnungen von 23 - 48 % möglich sind. Weitere Resultate weisen darauf hin, dass entgegen früherer Ansichten die Glukoseaufnahme pro Einheit fettfreier Masse durch Widerstandstraining erhöht werden kann. Die vermittelnden Mechanismen sind den bei Ausdauerinterventionen beobachteten ähnlich und betreffen Veränderungen der Glukosetransportkapazität, -speicherung, Insulinrezeptordichte sowie eventuell Auswirkungen auf der Postrezeptorebene. Weiterhin gibt es Hinweise auf die Beeinflussung von Sekretionsprodukten der Skelettmuskulatur und des weißen Fettgewebes durch physische Aktivität, wobei vor allem für Leptin Evidenz besteht. Widerstandstraining vermag über verschiedene Mechanismen den Glukosestoffwechsel relevant zu verändern und stellt eine wichtige Alternative bzw. Ergänzung zu Ausdaueraktivitäten dar.

Abstract

Regular endurance exercise is recommended as an important factor for the prevention and care of type 2 diabetes. In contrast, the lack of available data on the beneficial effects of resistance training exercise on parameters of glucose metabolism in the scientific literature must be noted. In spite of some limited study designs, the majority of results emphasizes the beneficial effects of regular resistance exercise in healthy, glucose impaired and type 2 diabetic individuals. The factor of exercise routine modulations are poorly understood, but early study results indicate that exercising on three to five days a week with an intensity of 40 - 60 % of the 1RM (1 repetition maximum) may improve insulin sensitivity within a range of 23 - 48 %. Also most of the present data indicates that resistance exercise induced increases in insulin sensitivity, even when corrected for lean body mass. The responsible mechanisms for this improvement appear similar to those found in endurance training studies, i.e, increased capacity for glucose transport and glucose storage, enhanced insulin receptor number and probably some effects on the postreceptor levels. Additionally, resistance training may influence circulating mediators that are secreted by white adipose tissue and skeletal muscle and these mediators are interfering with insulin action. Especially the adipocytokine leptin represents such a candidate. In conclusion, the present research indicates that regular resistance exercise contributed to improvements in certain parameters of glucose metabolism and might represent an adjunct or even alternative to endurance exercise.

Literatur

  • 1 DGE . Bevölkerungsstudie zur Häufigkeit des unentdeckten Diabetes mellitus (KORA-Survey).  DGE info. 2003;  10 150
  • 2 Rathmann W, Haastert B, Icks A, Lowel H, Meisinger C, Holle R, Giani G. High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA Survey 2000.  Diabetologia. 2003;  46 (2) 182-189
  • 3 DDG .Deutsche Evidenzbasierte Diabetes-Leitlinie: Definition, Klassifikation und Diagnostik. http://www.medizininfo.de/diabetes/klassifikation.htm
  • 4 Stamler J, Vaccaro O, Neaton J D, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial.  Diabetes Care. 1993;  16 (2) 434-444
  • 5 Manson J E, Colditz G A, Stampfer M J, Willett W C, Krolewski A S, Rosner B, Arky R A, Speizer F E, Hennekens C H. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women.  Arch Intern Med. 1991;  151 (6) 1141-1147
  • 6 Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes.  Prim Care. 1999;  26 (4) 829-839
  • 7 Kellerer M, Hennige A, Häring H-U. Typ-2-Diabetes. In: Schatz H (Hrsg) Diabetologie kompakt. Berlin; Blackwell 2001: 105-113
  • 8 Häring H U, Matthael S. Diabetes mellitus Typ 2. In: Scherbaum WA, Landgraf R (Hrsg) Praxis-Leitlinien der Deutschen Diabetes-Gesellschaft. Diabetes und Stoffwechsel 2002 11 (2): 9-13
  • 9 Knowler W C, Barrett-Connor E, Fowler S E, Hamman R F, Lachin J M, Walker E A, Nathan D M. (Diabetes Prevention Research Group) . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;  346 393-403
  • 10 Pan X R, Li G W, Hu Y H, Wang J X, Yang W Y, An Z X, Hu Z X, Lin J, Xiao J Z, Cao H B, Liu P A, Jiang X G, Jiang Y Y, Wang J P, Zheng H, Bennett P H, Howard B V. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance - The Da Qing IGT and diabetes study.  Diabetes Care. 1997;  20 (4) 537-544
  • 11 Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, Uusitupa M, Tuomiletho J. (Finnish Diabetes Prevention Study Group) . The finnish diabetes prevention study (DPS). Lifestyle intervention and 3-year results on diet and physical activity.  Diabetes Care. 2003;  26 (12) 3230-3236
  • 12 Hu F B, Manson J E, Stampfer M J, Colditz G, Liu S, Solomon C G, Willett W C. Diet, lifestyle, and risk of type 2 diabetes mellitus in women.  N Engl J Med. 2001;  345 (11) 790-797
  • 13 Lynch J, Helmrich S P, Lakka T A, Kaplan G A, Cohen R D, Salonen R, Salonen J T. Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle ages men.  Arch Intern Med. 1996;  156 (12) 1307-1314
  • 14 ADA . Physical Activity/Exercise and Diabetes.  Diabetes Care. 2004;  27 (1) 58-62
  • 15 Hughes V A, Fiatarone M A, Fielding R A, Kahn B B, Ferrara C M, Shepherd P, Fisher E C, Wolfe R R, Elashi D, Evans W J. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance.  Am J Physiol. 1993;  264 (6 Pt 1) 855-862
  • 16 Dela F, Larsen J J, Mikines K J, Ploug T, Petersen L N, Galbo H. Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training.  Diabetes. 1995;  44 (9) 1010-1020
  • 17 Miller W J, Sherman W M, Ivy J L. Effect of strength training on glucose tolerance and post-glucose insulin response.  Med Sci Sports Exerc. 1984;  16 (6) 539-543
  • 18 Craig B W, Everhart J, Brown R. The influence of high-resistance training on glucose tolerance in young and elderly subjects.  Mech Ageing Dev. 1989;  49 (2) 147-157
  • 19 Smutok M A, Reece C, Kokkinos P F, Farmer C, Dawson P, Shulman R, DeVane-Bell J, Patterson J, Charabogos C, Goldberg A P. Aerobic versus strength training for risk factor intervention in middle-aged men at high risk for coronary heart disease.  Metabolism. 1993;  42 (2) 177-184
  • 20 Smutok M A, Reece C, Kokkinos P F, Farmer C M, Dawson P K, DeVane J, Patterson J, Goldberg A P, Hurley B F. Effects of exercise training modality on glucose tolerance in men with abnormal glucose regulation.  Int J Sports Med. 1994;  15 (6) 283-289
  • 21 Fluckey J D, Hickey M S, Brambrink J K, Hart K K, Alexander K, Craig B W. Effects of resistance exercise on glucose tolerance in normal and glucose intolerant subjects.  J Appl Physiol. 1994;  77 (3) 1087-1092
  • 22 Dunstan D W, Puddey I B, Beilin L J, Burke V, Morton A R, Stanton K G. Effects of a short-term circuit weight training program on glycaemic control in NIDDM.  Diabetes Res Clin Pract. 1998;  40 (1) 53-61
  • 23 Eriksson J, Taimela S, Eriksson K, Parviainen S, Peltonen J, Kujala U. Resistance training in the treatment of non-insulin-dependent diabetes mellitus.  Int J Sports Med. 1997;  18 (4) 242-246
  • 24 Honkola A, Forsen T, Eriksson J. Resistance training improves the metabolic profile in individuals with type 2 diabetes.  Acta Diabetol. 1997;  34 (4) 245-248
  • 25 Castaneda C, Layne J E, Munoz-Orians L, Gordon P L, Walsmith J, Foldvari M, Roubenoff R, Tucker K L, Nelson M E. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes.  Diabetes Care. 2002;  25 2335-2341
  • 26 Dunstan D W, Daly R M, Owen N, Jolley D, DeCourten M, Shaw J, Zimmet P. High-intensity resistance training improves glycaemic control in older patients with type 2 diabetes.  Diabetes Care. 2002;  25 (10) 1729-1736
  • 27 Ishii T, Yamakita T, Sato T, Tanaka S, Fujii S. Resistance training improves insulin sensitivity in NIDDM subjects without altering maximal oxygen uptake.  Diabetes Care. 1998;  21 (8) 1353-1355
  • 28 Baldi J C, Snowling N. Resistance training improves glycaemic control in obese type 2 diabetic men.  Int J Sports Med. 2003;  24 (6) 419-423
  • 29 Andersen J L, Schjerling P, Andersen L L, Dela F. Resistance training and insulin action in humans: effects of de-training.  J Physiol. 2003;  551 (3) 1049-1058
  • 30 Miller J P, Pratley R E, Goldberg A P, Gordon P, Rubin M, Treuth M S, Ryan A S, Hurley B F. Strength training increases insulin action in healthy 50- to 65-yr-old men.  J Appl Physiol. 1994;  77 (3) 1122-1127
  • 31 Poehlmann E T, Dvorak R V, DeNino W F, Brochu M, Ades P A. Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: A controlled randomised trial.  J Clin Endocrinol Metab. 2000;  85 (7) 2463-2468
  • 32 Yki-Jarvinen H, Koivisto V A. Effects of body composition on insulin sensitivity.  Diabetes. 1983;  32 (10) 965-969
  • 33 Takala T O, Nuutila P, Knuuti J, Luotolahti M, Yvi-Järvinen H. Insulin action on heart and skeletal muscle glucose uptake in weight lifters and endurance athletes.  Am J Physiol Endocrinol Metab. 1999;  276 (39) 706-711
  • 34 Ryan A S, Hurlbut D E, Lott M E, Ivey F M, Fleg J, Hurley B F, Goldberg A P. Insulin action after resistive training in insulin resistant older men and women.  J Am Geriatr Soc. 2001;  49 (3) 247-253
  • 35 Eriksson J, Tuominen J, Valle T, Sundberg S, Sovijarvi A, Lindholm H, Tuomiletho J, Koivisto V. Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance?.  Horm Metab Res. 1998;  30 (1) 37-41
  • 36 Holten M K, Zacho M, Gasetr M, Juel C, Wojtaszewski J FP, Dela F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes.  Diabetes. 2004;  53 294-305
  • 37 Willey K A, Fiatarone Singh M A. Battling insulin resistance in elderly obese people with type 2 diabetes.  Diabetes Care. 2003;  26 (5) 1580-1588
  • 38 Houmard J A, Tanner C J, Slentz C A, Duscha B D, McCartney J S, Kraus W E. The effect of the volume and intensity of exercise training on insulin sensitivity.  J Appl Physiol. 2004;  96 (1) 100-106
  • 39 Ihlemann J, Ploug T, Galbo H. Effect of force development on contraction induced glucose transport in fast twitch rat muscle.  Acta Physiol Scand. 2001;  171 (4) 439-444
  • 40 ADA . Nutrition principles and recommendations in Diabetes.  Diabetes Care. 2004;  27 (1) 36-45
  • 41 Ryan A S, Pratley R E, Goldberg A P, Elahi D. Resistive training increases insulin action in postmenopausal women.  J Gerontol A Biol Sci Med Sci. 1996;  51 (5) 199-205
  • 42 Joseph L J, Trappe T A, Farrell P A, Campbell W W, Yarasheski K E, Lambert C P, Evans W J. Short-term moderate weight loss and resistance training do not affect insulin-stimulated glucose disposal in postmenopausal women.  Diabetes Care. 2001;  24 (11) 1863-1869
  • 43 Clevenger C M, Parker Jones P, Tanaka H, Seals D R, DESouza C. Decline in insulin action with age in endurance-trained humans.  J Appl Physiol. 2002;  93 (6) 2105-2111
  • 44 Zachwieja J J, Toffolo G, Cobelli C, Bier D M, Yarasheski K E. Resistance exercise and growth hormone administration in older men: effects on insulin sensitivity and secretion during a stable-label intravenous glucose tolerance test.  Metabolism. 1996;  45 (2) 254-260
  • 45 Reynolds 4th  T H, Supiano M A, Dengel D R. Resistance training enhances insulin-mediated glucose disposal with minimal effect on the tumor necrosis factor-alpha system in older hypertensives.  Metabolism. 2004;  53 (3) 397-402
  • 46 Ryan A S. Insulin resistance with ageing: effects of diet and exercise.  Sports Med. 2000;  30 (5) 327-346
  • 47 Best J D, Kahn S E, Ader M, Watanabe R M, Ni T C, Bergmann R N. Role of glucose effectiveness in the determination of glucose tolerance.  Diabetes Care. 1996;  19 (9) 1018-1030
  • 48 Fujitani J, Higaki Y, Kagawa T, Sakamoto M, Kiyonaga A, Shindo M, Taniguchi A, Nakai Y, Tokuyama K, Tanaka H. Intravenous glucose tolerance test-derived glucose effectiveness in strength trained humans.  Metabolism. 1998;  47 (7) 874-877
  • 49 Nishida Y, Higaki Y, Tokuyama K, Fujimi K, Kiyonaga A, Shindo M, Sato Y, Tanaka H. Effect of exercise training on glucose effectiveness in healthy men.  Diabetes Care. 2001;  24 (6) 1008-1013
  • 50 Gippini A, Mato A, Pazos R, Suarez B, Vila B, Gayoso P, Lage M, Casanueva F F. Effect of long-term strength training on glucose metabolism. Implications for individual impact of high lean mass and high fat mass on relationship between BMI and insulin sensitivity.  J Endocrinol Invest. 2002;  25 (6) 520-525
  • 51 Daugaard J R, Kristiansen S, Andersen J L, Hargreaves M, Richter E A. Fibre type-specific expression of GLUT 4 in human skeletal muscle.  Diabetes. 2000;  49 1092-1095
  • 52 Henriksen E J, Bourney R E, Rodnick K J, Koranyi L, Permutt M A, Holloszy J O. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles.  Am J Physiol. 1990;  259 (4 Pt 1) 593-598
  • 53 Megeney L A, Neufer P D, Dohm G L, Tan M H, Blewett C A, Elder G C, Bonen A. Effects of muscle activity and fiber composition on glucose transport and GLUT-4.  Am J Physiol. 1993;  264 (4 Pt 1) 583-593
  • 54 Kern M, Wells J A, Stephens J M, Elton C W, Friedman J E, Tapscott E B, Pekala P H, Dohm G L. Insulin responsiveness in skeletal muscle is determined by glucose transporter (GLUT 4) protein level.  Biochem J. 1990;  270 (2) 397-400
  • 55 Kong X, Manchester J, Salmons S, Lawrence J C. Glucose transporters in single skeletal muscle fibers. Relationship to hexokinase and regulation by contractile activity.  J Biol Chem. 1994;  269 (17) 12963-12967
  • 56 Goodyear L J, Hirshman M F, Smith R J, Horton E S. Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle.  Am J Physiol. 1991;  261 (5 Pt 1) 556-561
  • 57 Houmard J A, Egan P C, Neufer P D, Friedman J E, Wheeler W S, Israel R G, Dohm G L. Elevated skeletal muscle glucose transporter levels in exercise trained middle-aged men.  Am J Physiol. 1991;  261 (4) 427-443
  • 58 Andersen P H, Lund S, Schmitz O, Junker S, Kahn B B, Pedersen O. Increased insulin-stimulated glucose uptake in athletes: the importance of GLUT 4 mRNA, GLUT 4 protein and fibre type composition of skeletal muscle.  Acta Physiol Scand. 1993;  149 (4) 393-404
  • 59 Ebeling P, Bourey R, Koranyi L, Tuominen J A, Groop L C, Henriksson J, Mueckler M, Sovijarvi A, Koivisto V A. Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity.  J Clin Invest. 1993;  92 (4) 1623-1631
  • 60 Dela F, Handberg A, Mikines K J, Vinten J, Galbo H. GLUT 4 and insulin receptor binding and kinase activity in trained human muscle.  J Physiol. 1993;  469 615-624
  • 61 Dela F, Ploug T, Handberg A, Petersen L N, Larsen J J, Mikines K J, Galbo H. Physical training increases muscle GLUT 4 protein and mRNA in patients with NIDDM.  Diabetes. 1994;  43 (7) 862-865
  • 62 Houmard J A, Hickey M S, Tyndall G L, Gavigan K E, Dohm G L. Seven days of exercise increase GLUT4 protein content in human skeletal muscle.  J Appl Physiol. 1995;  79 (6) 1936-1938
  • 63 Phillips S M, Han X X, Green H J, Bonen A. Increments in skeletal muscle GLUT-1 and GLUT-4 after endurance training in humans.  Am J Physiol. 1996;  270 (3 Pt 1) 456-462
  • 64 Vukovich M D, Arciero P J, Johrt W M, Racette S B, Hansen P A, Holloszy J O. Changes in insulin action and GLUT4 with 6 days of inactivity in endurance runners.  J Appl Physiol. 1996;  80 (1) 240-244
  • 65 Hardin D S, Azzarelli B, Edwards J, Wigglesworth J, Maianu L, Brechtel G, Johnson A, Baron A, Garvey W T. Mechanisms of enhanced insulin sensitivity in endurance-trained athletes: effects on blood flow and differential expression of GLUT4 in skeletal muscles.  J Endocrinol Metab. 1995;  80 (8) 2437-2446
  • 66 Houmard J A, Hotobagyi T, Neufer P D, Johns R A, Fraser D D, Israel R G, Dohm G L. Training cessation does not alter GLUT-4 protein levels in human skeletal muscle.  J Appl Physiol. 1993;  74 (2) 776-781
  • 67 Tabata I, Suzuki Y, Fukunaga T, Yokozeki T, Akima H, Funato K. Resistance Training affects GLUT-4 content in skeletal muscle of humans after 19 days of head-down bed rest.  J Appl Physiol. 1999;  86 (3) 909-914
  • 68 Matthew W H, Dohm G L. The molecular mechanism linking muscle fat accumulation to insulin resistance.  Proc Nutr Soc. 2004;  63 375-380
  • 69 Goodpaster B H, Kelley D E. Skeletal muscle triglyceride: marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus?.  Curr Diab Rep. 2002;  2 (3) 216-222
  • 70 Helge J W, Dela F. Effect of training on muscle triacylglycerol and structural lipids: a relation to insulin sensitivity.  Diabetes. 2003;  52 (8) 1881-1887
  • 71 Pedersen B K, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Wolsk-Petersen E, Febbraio M. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor?.  Proc Nutr Soc. 2004;  63 263-267
  • 72 Hesselink M KC, Baak M van. Physical activity and health, novel concepts and new targets: report from the 12th conference of the international research group on the biochemistry of exercise.  Proc Nutr Soc. 2004;  63 189-197
  • 73 Guerre-Millo M. Extending the glucose/fatty acid cycle: a glucose/adipose tissue cycle.  Biochem Soc Trans. 2003;  31 (Pt 6) 1161-1164
  • 74 Tomas E, Kelly M, Xiang X, Tsao T S, Keller C, Keller P, Luo Z, Lodish H, Saha A K, Unger R, Ruderman N B. Metabolic and hormonal interactions between muscle and adipose tissue.  Proc Nutr Soc. 2004;  63 382-385
  • 75 Ren J. Leptin and hyperleptinemia - from friend to foe for cardiovascular function.  J Endocrinol. 2004;  181 1-10
  • 76 Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin.  Science. 1996;  274 (5290) 1185-1188
  • 77 Kirchgessner T G, Uysal K T, Wiesbrock S M, Marino M W, Hotamisligil G S. Tumor necrosis factor-α contributes to obesity-related Hyperleptinemia by regulating leptin release from adipocytes.  J Clin Invest. 1997;  100 2777-2782
  • 78 Hotamisligil G S, Spiegelman B M. Tumor necrosis factor-α: A key component of the obesity-diabetes link.  Diabetes. 1994;  43 1271-1278
  • 79 Miyatake N, Takahashi K, Wada J, Nishiwaka H, Morishita A, Suzuki H, Kunitomi M, Makino H, Kira S, Fujii M. Changes in serum leptin concentrations in overweight Japanese men after exercise.  Diabetes Obes Metab. 2004;  6 (5) 332-337
  • 80 Pasmann W J, Westerterp-Plantenga M S, Saris W HM. The effect of exercise training on leptin levels in obese males.  Am J Physiol Endocrinol Metab. 1998;  274 (2) 280-286
  • 81 Cusin I, Sainsbury A, Doyle P, Rohner-Jeanrenaud F, Jeanrenaud B. The ob gene and insulin. A relationship leading to clues to the understanding of obesity.  Diabetes. 1995;  44 (12) 1467-1470
  • 82 Ostlund jr R E, Yang J W, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age and metabolic covariates.  J Endocrinol Metab. 1996;  81 (11) 3909-3913
  • 83 Perusse L, Collier G, Gagnon J, Leon A S, Rao D C, Skinner J S, Wilmore J H, Nadeau A, Zimmet P Z, Bouchard C. Acute and chronic effects of exercise on leptin levels in humans.  J Appl Physiol. 1997;  83 (1) 5-10
  • 84 Ishii T, Yamakita T, Yamagami K, Yamamoto T, Miyamoto M, Kawasaki K, Hosoi M, Yoshioka K, Sato T, Tanaka S, Fujii S. Effect of exercise training on serum leptin levels in type 2 diabetic patients.  Metabolism. 2001;  50 (10) 1136-1140
  • 85 Monzillo L U, Hamdy O, Horton E S, Ledbury S, Mullooly C, Jareme C, Porter S, Ovalle K, Moussa A, Mantzoros C S. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance.  Obes Res. 2003;  11 (9) 1048-1054
  • 86 Boudou P, Sobngwi E, Mauvais-Jarvis F, Vexiau P, Gautier J-F. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men.  Eur J Endocrinol. 2003;  149 431-424
  • 87 Kanaley J A, Fenicchia L M, Miller C S, Ploutz-Snyder L L, Weinstock R S, Carhart R, Azevedo J L. Resting leptin responses to acute and chronic resistance training in type 2 diabetic men and women.  Int J Relat Metab Disord. 2001;  25 (10) 1474-1480
  • 88 Fernandez-Real J M, Vayreda M, Casamitjana R, Gonzalez-Huix F, Ricart W. The fat-free mass compartment influences serum leptin in men.  Eur J Endocrinol. 2000;  142 (1) 25-29
  • 89 Loeffelholz C Von, Kratzsch J, Jahreis G. Influence of conjugated linoleic acids on body composition and selected serum and endocrine parameters in resistance-trained athletes.  Eur J Lipid Sci Technol. 2003;  105 (6) 251-259
  • 90 Ferguson M A, White L J, McCoy S, Kim H W, Petty T, Wilsey J. Plasma adiponectin response to acute exercise in healthy subjects.  Eur J Appl Physiol. 2004;  91 (2 - 3) 324-329
  • 91 Yatagai T, Nishida Y, Nagasaka S, Nakamura T, Tokuyama K, Shindo M, Tanaka H, Ishibashi S. Relationship between exercise training-induced increase in insulin sensivity and adiponectinemia in healthy men.  Endocr J. 2003;  50 (2) 233-238
  • 92 Ryan A S, Nicklas B J, Berman D M, Elahi D. Adiponestin levels do not change with moderate dietary induced weight loss and exercise in obese postmenopausal women.  Int J Obes Relat Metab Disord. 2003;  27 (9) 1066-1071
  • 93 Kraemer R R, Aboudehen K S, Carruth A K, Durand R T, Acevedo E O, Hebert E P, Johnson L G, Castracane V D. Adiponectin response to continuous and progressively intense intermittent exercise.  Med Sci Sports Exerc. 2003;  35 (8) 1320-1325
  • 94 Hulver M W, Zheng D, Tanner C J, Houmard J A, Kraus W E, Slentz C A, Sinha M K, Pories W J, MacDonald K G, Dohm G L. Adiponectin is not altered with exercise training despite enhanced insulin action.  Am J Endocrinol Metab. 2002;  283 861-865
  • 95 Lee J H, Chan J L, Yiannakouris N, Kontogianni M, Estrada E, Seip R, Orlova C, Mantzoros C S. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: Cross sectional and interventional studies in normal, insulin-resistant, and diabetic subjects.  J Clin Endocrinol Metab. 2003;  88 (10) 4848-4856
  • 96 Jurimae J, Purge P, Jurimae T. Adiponectin is altered after maximal exercise in highly trained male rowers.  Eur J Appl Physiol. 2005;  93 (4) 502-505

C. von Loeffelholz
G. Jahreis

Institute of Nutrition · Friedrich Schiller University

Dornburger Straße 24

07743 Jena · Germany

Email: b6jage@rz.uni-jena.de

    >