Plant Biol (Stuttg) 2007; 9(4): 545-549
DOI: 10.1055/s-2006-955946
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Temperature-Respiration Relationships Differ in Mycorrhizal and Non-Mycorrhizal Root Systems of Picea abies (L.) Karst.

N. Koch1 , C. P. Andersen2 , S. Raidl3 , R. Agerer3 , R. Matyssek1 , T. E. E. Grams1
  • 1Department of Ecology, Ecophysiology of Plants, Technische Universität München, Am Hochanger 13, 85354 Freising, Germany
  • 2US Environmental Protection Agency, Western Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, 200 SW 35th Street, Corvallis, Oregon 97333, USA
  • 3Department Biology I and GeoBio-CenterLMU, Biodiverstity Research, Systematic Mycology, Ludwig-Maximilians-Universität München, Menzinger Straße 67, 80638 München, Germany
Further Information

Publication History

Received: September 12, 2006

Accepted: October 30, 2006

Publication Date:
15 February 2007 (online)

Abstract

Root respiration has been shown to increase with temperature, but less is known about how this relationship is affected by the fungal partner in mycorrhizal root systems. In order to test respiratory temperature dependence, in particular Q10 of mycorrhizal and non-mycorrhizal root systems, seedlings of Picea abies (L.) Karst. (Norway spruce) were inoculated with the ectomycorrhizal fungus Piloderma croceum (Eriksson and Hjortstam, SR430; synonym: Piloderma fallax: [Libert] Stalpers) and planted in soil respiration cuvettes (mycocosms). Temperature dependence of hyphal respiration in sterile cultures was determined and compared with respiration of mycorrhizal roots. Respiration rates of mycorrhizal and non-mycorrhizal root systems as well as sterile cultures were sensitive to temperature. Q10 of mycorrhizal root systems of 3.0 ± 0.1 was significantly higher than that of non-mycorrhizal systems (2.5 ± 0.2). Q10 of P. croceum in sterile cultures (older than 2 months) was similar to that of mycorrhizal root systems, suggesting that mycorrhizae may have a large influence on the temperature sensitivity of roots in spite of their small biomass. Our results stress the importance of considering mycorrhization when modeling the temperature sensitivity of spruce roots.

References

  • 1 Agerer R., Raidl S.. Distance-related semi-quantitative estimation of extramatrical ectomycorrhizal mycelia of Cortinarius obtusus and Tylospora asterophora.  Mycological Progress. (2004);  3 57-64
  • 2 Andersen C. P., Rygiewicz P. T.. Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities.  Environmental Pollution. (1991);  73 217-244
  • 3 Andersen C. P., Rygiewicz P. T.. Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone.  New Phytologist. (1995);  131 471-480
  • 4 Atkin O. K., Edwards E. J., Loveys B. R.. Response of root respiration to changes in temperature and its relevance to global warming.  New Phytologist. (2000);  147 141-154
  • 5 Bååth E., Söderström B.. Fungal biomass and fungal immobilization of plant nutrients in Swedish coniferous forest soils.  Revue d'Ecologie et de Biologie du Sol. (1979);  16 477-489
  • 6 Bååth E., Wallander H.. Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system.  Global Change Biology. (2003);  9 1788-1791
  • 7 Boone R. D., Nadelhoffer K. J., Canary J. D., Kaye J. P.. Roots exert a strong influence on the temperature sensitivity of soil respiration.  Nature. (1998);  396 570-572
  • 8 Brand F.. Ektomykorrhizen an Fagus sylvatica. Charakterisierung und Identifizierung, ökologische Kennzeichnung und unsterile Kultivierung.  Libri Botanici. (1991);  2 1-228
  • 9 Buchmann N.. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands.  Soil Biology and Biochemistry. (2000);  32 1625-1635
  • 10 Burton A. J., Pregitzer K. S., Ruess R. W., Hendrick R. L., Allen M. F.. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes.  Oecologia. (2002);  131 559-568
  • 11 Epron D., Le Dantec V., Dufrene E., Granier A.. Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest.  Tree Physiology. (2001);  21 145-152
  • 12 Hanson P. J., Edwards N. T., Garten C. T., Andrews J. A.. Separating root and soil microbial contributions to soil respiration: a review of methods and observations.  Biogeochemistry. (2000);  48 115-146
  • 13 Heinemeyer A., Ineson P., Ostle N., Fitter A. H.. Respiration of the external mycelium in the abuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.  New Phytologist. (2006);  171 159-170
  • 14 Herrmann S., Oelmüller R., Buscot F.. Manipulation of the onset of ectomycorrhiza formation by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak microcuttings and Piloderma croceum: influence on plant development and photosynthesis.  Journal of Plant Physiology. (2004);  161 509-517
  • 15 Högberg P., Nordgren A., Buchmann N., Taylor A. F. S., Ekblad A., Högberg M. N., Nyberg G., Ottosson-Löfvenius M., Read D. J.. Large-scale forest girdling shows that current photosynthesis drives soil respiration.  Nature. (2001);  411 789-792
  • 16 Janssens I. A., Pilegaard K.. Large seasonal change in Q 10 of soil respiration in a beech forest.  Global Change Biology. (2003);  9 911-918
  • 17 Jones C. D., Cox P., Huntingford C.. Uncertainty in climate-carbon cycle projections associated with the sensitivity of soil respiration.  Tellus. (2003);  55B 642-648
  • 18 Kirschbaum M. U. F.. Will changes in soil organic carbon act as a positive or negative feedback on global warming?.  Biogeochemistry. (2000);  48 21-51
  • 19 Kirschbaum M. U. F.. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage.  Soil Biology and Biochemistry. (1995);  27 753-760
  • 20 Kunzweiler K., Kottke I.. Quantifizierung von Myzel im Waldboden. Einsele, G., ed. Das landschaftsökologische Forschungsprojekt Naturpark Schönbuch. Weinheim; VCH Verlagsgesellschaft (1986): 429-444
  • 21 Langley J., Johnson N. C., Koch G. W.. Mycorrhizal status influences the rate but not the temperature sensitivity of soil respiration.  Plant and Soil. (2005);  277 335-344
  • 22 Law B. E., Ryan M. G., Anthoni P. M.. Seasonal and annual respiration of a ponderosa pine ecosystem.  Global Change Biology. (1999);  5 169-182
  • 23 Lipp C. C., Andersen C. P.. Role of carbohydrate supply in white and brown root respiration of ponderosa pine.  New Phytologist. (2003);  160 523-531
  • 24 Lloyd J., Taylor J. A.. On the temperature dependence of soil respiration.  Functional Ecology. (1994);  8 315-323
  • 25 Marx D. H.. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria.  Phytopathology. (1969);  59 153-163
  • 26 Pietikainen J., Pettersson M., Bååth E.. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates.  FEMS Microbiology Ecology. (2005);  52 49-58
  • 27 Reichenstein M., Subke J.-A., Angeli A. C., Tenhunen J. D.. Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time?.  Global Change Biology. (2005);  11 1754-1767
  • 28 Rygiewicz P. T., Miller S. L., Durall D. M.. A root-mycocosm for growing ectomycorrhizal hyphae apart from host roots while maintaining symbiotic integrity.  Plant and Soil. (1988);  109 281-284
  • 29 Rygiewicz P. T., Andersen C. P.. Mycorrhizae alter quality and quantity of carbon allocated below ground.  Nature. (1994);  369 58-60
  • 30 Schubert R., Raidl S., Funk R., Bahnweg G., Müller-Starck G., Agerer R.. Quantitative detection of the agar-cultivated and rhizotron-grown ectomycorrhizal fungus Piloderma croceum Erikss. and Hjortst. by ITS1-based fluorescent polymerase chain reaction in comparison with direct microscopy.  Mycorrhiza. (2003);  13 159-165
  • 31 Schulze E. D., Hall A. E., Lange O. L., Walz H.. A portable steady-state porometer for measuring the carbon-dioxide and water-vapor exchanges of leaves under natural conditions.  Oecologia. (1982);  53 141-145
  • 32 Smith S. E., Read D. J.. Mycorrhizal Symbiosis. San Diego, CA, USA; Academic Press (1997): 605
  • 33 Staddon P. L., Heinemeyer A., Fitter A. H.. Mycorrhizas and global environmental change: research at different scales.  Plant and Soil. (2002);  344 253-261
  • 34 Wieser G.. Seasonal variation of soil respiration in a Pinus cembra forest at the upper timberline in the Central Austrian Alps.  Tree Physiology. (2004);  24 475-480
  • 35 Yuste J. C., Janssens I. A., Carrara A., Ceulemans R.. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity.  Global Change Biology. (2004);  10 161-169

N. Koch

Department of Ecology, Ecophysiology of Plants
Technische Universität München

Am Hochanger 13

85354 Freising

Germany

Email: kochnina@gmx.de

Editor: J. P. Sparks