Semin Reprod Med 2007; 25(4): 252-263
DOI: 10.1055/s-2007-980219
Published in 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Transcriptional Control of Ovarian Development in Somatic Cells

Chris Ottolenghi1 , Maria Colombino1 , Laura Crisponi2 , Antonio Cao2 , Antonino Forabosco3 , David Schlessinger1 , Manuela Uda2
  • 1Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland
  • 2Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, c/o Ospedale Microcitemico, Cagliari, Italy
  • 3Genetica Medica, Dipartimento Materno-Infantile, Università di Modena e Reggio-Emilia, Policlinico, Modena, Italy
Further Information

Publication History

Publication Date:
26 June 2007 (online)

ABSTRACT

Developmental transitions of the bipotential gonad to the embryonic ovary and thence to the follicle-filled mature ovary are expected to be coordinated by sets of transcription factors. We infer candidate lists here, focusing on somatic cell fate and function. For the mouse, developmental stages of ovary differentiation are relatively discretely phased, and provide a unique tool to investigate the intricate mechanisms that lead to the acquisition of female reproductive competence. Cross-platform gene expression profiles supplement functional studies of specific genes and comparative information about human biology. Available data suggest that: (1) peak transcription activity just precedes the two most decisive steps of early ovary differentiation (i.e., entry into meiosis and follicle formation); (2) alternating peak gene activities in oocytes and somatic cells may reflect reciprocal interactions; and (3) in addition to stable states of chromatin modification associated with morphogenesis, some features of differentiation are labile, contingent on the expression state of critical factors. Examples are the maintenance of somatic sex determination by continued Foxl2 action and the reversible maintenance of follicles in a quiescent state by nuclear Foxo3.

REFERENCES

  • 1 Tokarz R R. Oogonial proliferation, oogenesis, and folliculogenesis in nonmammalian vertebrates. In: Jones RE The Vertebrate Ovary: Comparative Biology and Evolution. New York; Plenum Press 1971: 145-179
  • 2 Byskov A G, Faddy M J, Lemmen J G et al.. Eggs forever?.  Differentiation. 2005;  73 438-446
  • 3 Eggan K, Jurga S, Gosden R et al.. Ovulated oocytes in adult mice derive from non-circulating germ cells.  Nature. 2006;  441 1109-1114
  • 4 Gilboa L, Lehmann R. How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males.  Development. 2004;  131 4895-4905
  • 5 McLaren A. Development of the mammalian gonad: the fate of the supporting cell lineage.  Bioessays. 1991;  13 151-156
  • 6 Eppig J J, Chesnel F, Hirao Y et al.. Oocyte control of granulosa cell development: how and why.  Hum Reprod. 1997;  12 127-132
  • 7 Matzuk M M, Burns K H, Viveiros M M et al.. Intercellular communication in the mammalian ovary: oocytes carry the conversation.  Science. 2002;  296 2178-2180
  • 8 Hirshfield A N. Development of follicles in the mammalian ovary.  Int Rev Cytol. 1991;  124 43-101
  • 9 Canipari R. Oocyte-granulosa cell interactions.  Hum Reprod Update. 2000;  6 279-289
  • 10 Berkholtz C B, Shea L D, Woodruff T K. Extracellular matrix functions in follicle maturation.  Semin Reprod Med. 2006;  24 262-269
  • 11 Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis.  Cell Mol Life Sci. 2006;  63 579-590
  • 12 Matzuk M M. Revelations of ovarian follicle biology from gene knockout mice.  Mol Cell Endocrinol. 2000;  163 61-66
  • 13 Park S Y, Jameson J L. Minireview: transcriptional regulation of gonadal development and differentiation.  Endocrinology. 2005;  146 1035-1042
  • 14 Pangas S A, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters.  Hum Reprod Update. 2006;  12 65-76
  • 15 Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development.  Nat Rev Genet. 2004;  5 509-521
  • 16 Byskov A G. Differentiation of mammalian embryonic gonad.  Physiol Rev. 1986;  66 71-117
  • 17 Gosden R G. Restitution of fertility in sterilized mice by transferring primordial ovarian follicles.  Hum Reprod. 1990;  5 499-504
  • 18 Byskov A G, Guoliang X, Andersen C Y. The cortex-medulla oocyte growth pattern is organized during fetal life: an in-vitro study of the mouse ovary.  Mol Hum Reprod. 1997;  3 795-800
  • 19 Pan H, O'Brien M J, Wigglesworth K et al.. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro.  Dev Biol. 2005;  286 493-506
  • 20 Nef S, Schaad O, Stallings N R et al.. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development.  Dev Biol. 2005;  287 361-377
  • 21 Small C L, Shima J E, Uzumcu M et al.. Profiling gene expression during the differentiation and development of the murine embryonic gonad.  Biol Reprod. 2005;  72 492-501
  • 22 Zeller R, Duboule D. Dorso-ventral limb polarity and origin of the ridge: on the fringe of independence?.  Bioessays. 1997;  19 541-546
  • 23 Birk O S, Casiano D E, Wassif C A et al.. The LIM homeobox gene Lhx9 is essential for mouse gonad formation.  Nature. 2000;  403 909-913
  • 24 Pellegrini M, Mansouri A, Simeone A et al.. Dentate gyrus formation requires Emx2.  Development. 1996;  122 3893-3898
  • 25 Pellegrini M, Pantano S, Lucchini F et al.. Emx2 developmental expression in the primordia of the reproductive and excretory systems.  Anat Embryol (Berl). 1997;  196 427-433
  • 26 Jeays-Ward K, Hoyle C, Brennan J et al.. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad.  Development. 2003;  130 3663-3670
  • 27 Swain A, Narvaez V, Burgoyne P et al.. Dax1 antagonizes Sry action in mammalian sex determination.  Nature. 1998;  391 761-767
  • 28 Meeks J J, Weiss J, Jameson J L. Dax1 is required for testis determination.  Nat Genet. 2003;  34 32-33
  • 29 Park S Y, Meeks J J, Raverot G et al.. Nuclear receptors Sf1 and Dax1 function cooperatively to mediate somatic cell differentiation during testis development.  Development. 2005;  132 2415-2423
  • 30 Jeays-Ward K, Dandonneau M, Swain A. Wnt4 is required for proper male as well as female sexual development.  Dev Biol. 2004;  276 431-440
  • 31 Biason-Lauber A, De Filippo G, Konrad D et al.. WNT4 deficiency-a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report.  Hum Reprod. 2007;  22 224-229
  • 32 Parma P, Radi O, Vidal V et al.. R-spondin1 is essential in sex determination, skin differentiation and malignancy.  Nat Genet. 2006;  38 1304-1309
  • 33 Capel B. R-spondin1 tips the balance in sex determination.  Nat Genet. 2006;  38 1233-1234
  • 34 Kim S, Kettlewell J R, Anderson R C et al.. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad.  Gene Expr Patterns. 2003;  3 77-82
  • 35 Luoh S W, Bain P A, Polakiewicz R D et al.. Zfx mutation results in small animal size and reduced germ cell number in male and female mice.  Development. 1997;  124 2275-2284
  • 36 Cui S, Ross A, Stallings N et al.. Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice.  Development. 2004;  131 4095-4105
  • 37 Jorgensen J S, Gao L. Irx3 is differentially up-regulated in female gonads during sex determination.  Gene Expr Patterns. 2005;  5 756-762
  • 38 Yomogida K, Ohtani H, Harigae H et al.. Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells.  Development. 1994;  120 1759-1766
  • 39 Vendola K, Zhou J, Wang J et al.. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary.  Biol Reprod. 1999;  61 353-357
  • 40 Peters H, Levy E, Crone M. Deoxyribonucleic acid synthesis in oocytes of mouse embryos.  Nature. 1962;  195 915-916
  • 41 Falender A E, Shimada M, Lo Y K et al.. TAF4b, a TBP associated factor, is required for oocyte development and function.  Dev Biol. 2005;  288 405-419
  • 42 Britt K L, Stanton P G, Misso M et al.. The effects of estrogen on the expression of genes underlying the differentiation of somatic cells in the murine gonad.  Endocrinology. 2004;  145 3950-3960
  • 43 Buck Louis G M, Lynch C D, Cooney M A. Environmental influences on female fecundity and fertility.  Semin Reprod Med. 2006;  24 147-155
  • 44 Reynaud K, Cortvrindt R, Verlinde F et al.. Number of ovarian follicles in human fetuses with the 45,X karyotype.  Fertil Steril. 2004;  81 1112-1119
  • 45 Burgoyne P S, Baker T G. Perinatal oocyte loss in XO mice and its implications for the aetiology of gonadal dysgenesis in XO women.  J Reprod Fertil. 1985;  75 633-645
  • 46 Schlessinger D, Herrera L, Crisponi L et al.. Genes and translocations involved in POF.  Am J Med Genet. 2002;  111 328-333
  • 47 Liang L, Soyal S M, Dean J. FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes.  Development. 1997;  124 4939-4947
  • 48 Uda M, Ottolenghi C, Crisponi L et al.. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development.  Hum Mol Genet. 2004;  13 1171-1181
  • 49 Loffler K A, Zarkower D, Koopman P. Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development.  Endocrinology. 2003;  144 3237-3243
  • 50 Ottolenghi C, Omari S, Garcia-Ortiz J E et al.. Foxl2 is required for commitment to ovary differentiation.  Hum Mol Genet. 2005;  14 2053-2062
  • 51 Crisponi L, Deiana M, Loi A et al.. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome.  Nat Genet. 2001;  27 159-166
  • 52 Nallathambi J, Moumne L, De Baere E et al.. A novel polyalanine expansion in FOXL2: the first evidence for a recessive form of the blepharophimosis syndrome (BPES) associated with ovarian dysfunction.  Hum Genet. 2007;  121 107-112
  • 53 Harris S E, Chand A L, Winship I M et al.. Identification of novel mutations in FOXL2 associated with premature ovarian failure.  Mol Hum Reprod. 2002;  8 729-733
  • 54 Ellsworth B S, Egashira N, Haller J L et al.. FOXL2 in the pituitary: molecular, genetic, and developmental analysis.  Mol Endocrinol. 2006;  20 2796-2805
  • 55 Schmidt D, Ovitt C E, Anlag K et al.. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance.  Development. 2004;  131 933-942
  • 56 Fraser I S, Shearman R P, Smith A et al.. An association among blepharophimosis, resistant ovary syndrome, and true premature menopause.  Fertil Steril. 1988;  50 747-751
  • 57 Couse J F, Hewitt S C, Bunch D O et al.. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta.  Science. 1999;  286 2328-2331
  • 58 Jefferson W, Newbold R, Padilla-Banks E et al.. Neonatal genistein treatment alters ovarian differentiation in the mouse: inhibition of oocyte nest breakdown and increased oocyte survival.  Biol Reprod. 2006;  74 161-168
  • 59 Pailhoux E, Vigier B, Chaffaux S et al.. A 11.7-kb deletion triggers intersexuality and polledness in goats.  Nat Genet. 2001;  29 453-458
  • 60 Dong J, Albertini D F, Nishimori K et al.. Growth differentiation factor-9 is required during early ovarian folliculogenesis.  Nature. 1996;  383 531-535
  • 61 Paredes A, Romero C, Dissen G A et al.. TrkB receptors are required for follicular growth and oocyte survival in the mammalian ovary.  Dev Biol. 2004;  267 430-449
  • 62 Spears N, Molinek M D, Robinson L L et al.. The role of neurotrophin receptors in female germ-cell survival in mouse and human.  Development. 2003;  130 5481-5491
  • 63 McGee E A, Hsueh A J. Initial and cyclic recruitment of ovarian follicles.  Endocr Rev. 2000;  21 200-214
  • 64 Skinner M K. Regulation of primordial follicle assembly and development.  Hum Reprod Update. 2005;  11 461-471
  • 65 Holt J E, Jackson A, Roman S D et al.. CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary.  Dev Biol. 2006;  293 449-460
  • 66 Gruijters M J, Visser J A, Durlinger A L et al.. Anti-Mullerian hormone and its role in ovarian function.  Mol Cell Endocrinol. 2003;  211 85-90
  • 67 Castrillon D H, Miao L, Kollipara R et al.. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a.  Science. 2003;  301 215-218
  • 68 Hosaka T, Biggs III W H, Tieu D et al.. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification.  Proc Natl Acad Sci USA. 2004;  101 2975-2980
  • 69 Reddy P, Shen L, Ren C et al.. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development.  Dev Biol. 2005;  281 160-170
  • 70 Shi F, LaPolt P S. Relationship between FoxO1 protein levels and follicular development, atresia, and luteinization in the rat ovary.  J Endocrinol. 2003;  179 195-203
  • 71 Kirkwood T B. Genes that shape the course of ageing.  Trends Endocrinol Metab. 2003;  14 345-347
  • 72 Pisarska M D, Bae J, Klein C et al.. Forkhead l2 is expressed in the ovary and represses the promoter activity of the steroidogenic acute regulatory gene.  Endocrinology. 2004;  145 3424-3433
  • 73 Mattiske D, Kume T, Hogan B L. The mouse forkhead gene Foxc1 is required for primordial germ cell migration and antral follicle development.  Dev Biol. 2006;  290 447-458
  • 74 Benedict J C, Lin T M, Loeffler I K et al.. Physiological role of the aryl hydrocarbon receptor in mouse ovary development.  Toxicol Sci. 2000;  56 382-388
  • 75 Balciuniene J, Bardwell V J, Zarkower D. Mice mutant in the DM domain gene Dmrt4 are viable and fertile but have polyovular follicles.  Mol Cell Biol. 2006;  26 8984-8991
  • 76 Ottolenghi C, Fellous M, Barbieri M et al.. Novel paralogy relations among human chromosomes support a link between the phylogeny of doublesex-related genes and the evolution of sex determination.  Genomics. 2002;  79 333-343
  • 77 Veith A M, Klattig J, Dettai A et al.. Male-biased expression of X-chromosomal DM domain-less Dmrt8 genes in the mouse.  Genomics. 2006;  88 185-195
  • 78 Weiss J, Meeks J J, Hurley L et al.. Sox3 is required for gonadal function, but not sex determination, in males and females.  Mol Cell Biol. 2003;  23 8084-8091
  • 79 Hiroi H, Christenson L K, Chang L et al.. Temporal and spatial changes in transcription factor binding and histone modifications at the steroidogenic acute regulatory protein (stAR) locus associated with stAR transcription.  Mol Endocrinol. 2004;  18 791-806
  • 80 Ottolenghi C, Uda M, Crisponi L et al.. Determination and stability of sex.  Bioessays. 2007;  29 15-25
  • 81 Clark K L, Halay E D, Lai E et al.. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5.  Nature. 1993;  364 412-420
  • 82 Cirillo L A, McPherson C E, Bossard P et al.. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome.  EMBO J. 1998;  17 244-254
  • 83 Cirillo L, Zaret K. Developmental biology. A linker histone restricts muscle development.  Science. 2004;  304 1607-1609
  • 84 Carroll J S, Brown M. Estrogen receptor target gene: an evolving concept.  Mol Endocrinol. 2006;  20 1707-1714
  • 85 Cole S W, Galic Z, Zack J A. Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.  Bioinformatics. 2003;  19 1808-1816

David Schlessinger

TRIAD Building, 333 Cassell Drive

Suite 3000, Baltimore, MD 21224

Email: SchlessingerD@grc.nia.nih.gov

    >