RSS-Feed abonnieren
DOI: 10.1055/s-2008-1027241
© Georg Thieme Verlag KG Stuttgart · New York
Optische Kohärenztomographie des vorderen Augenabschnittes bei Glaukom
Anterior Segment Optical Coherence Tomography in GlaucomaPublikationsverlauf
Eingegangen: 20.12.2007
Angenommen: 7.2.2008
Publikationsdatum:
20. März 2008 (online)

Zusammenfassung
Die in den letzten Jahren erfolgte rasante Entwicklung im Bereich der diagnostischen optischen Verfahren brachte die Optische Kohärenztomographie (OCT) als neueres, nichtinvasives Diagnoseverfahren hervor. Durch die technische Weiterentwicklung im langwelligen Infrarot-Spektrum bei 1310 nm konnte die Optische Kohärenztomographie (OCT) auch am vorderen Augenabschnitt erfolgen. Mittels Vorderabschnitts-OCT können beim Glaukom verschiedene Untersuchungen, welche bislang als Kontaktverfahren mittels Ultraschall erfolgten, berührungsfrei Anwendung finden: Pachymetrie, Goniometrie, Darstellung der Iris- und Linsenkonfiguration sowie postoperative Befunde nach verschiedenen Glaukomoperationen wie Trabekulektomie, tiefer Sklerektomie und Glaukom-Drainage-Implantaten. Darüber hinaus bietet sich für Glaukomfragestellungen die OCT am vorderen Augenabschnitt bei experimentellen Ansätzen als bildgebendes Verfahren an. Zur Verfügung stehen derzeit zwei kommerzielle Geräte: SL OCT (Heidelberg Engineering, Heidelberg) und Visante® OCT (Zeiss Meditec, Jena). Für alle Anwendungen liefert die OCT eine hohe Inter- und Intraobserver-Reproduzierbarkeit und ist bei höherem Patientenkomfort der Ultraschallgenauigkeit gleichwertig. Bei einzelnen Anwendungen sind im direkten Vergleich mit der Ultraschalltechnik je nach Gerätetyp geringgradige Unterschiede evaluierbar, weshalb bei allen Messungen eine Geräteangabe erfolgen sollte. Die OCT ermöglicht eine präzise, zweidimensionale, kontaktfreie Darstellung des Vorderabschnitts in hoher Auflösung. Für glaukomatöse Erkrankungen ergänzt und bereichert die Vorderabschnitts-OCT das Armamentarium in der Glaukomdiagnostik und postoperativen Nachsorge der verschiedensten, derzeit modernen Glaukomoperationen.
Abstract
In recent years, the rapid development of diagnostic optic devices has generated optical coherence tomography (OCT) as a new, non-invasive diagnostic method. With technical progress of the infrared spectrum at 1310 nm, OCT of the anterior segment also became feasible. With anterior segment OCT different examinations which so far were ruled out by ultrasound in contact manner could be executed in a non-contact technique: pachymetry, goniometry, illustration of iris and lens configuration as well as postoperative results after different glaucoma surgeries such as trabeculectomy, deep sclerectomy and glaucoma drainage devices. Additionally, anterior segment OCT provides an imaging device for experimental approaches in glaucoma. Today two commercially available units are available: SL OCT (Heidelberg Engineering, Heidelberg, Germany) und Visante® OCT (Zeiss Meditec, Jena, Germany). For all applications OCT delivered a high inter- and intraobserver reproducibility, is equal to ultrasound in accuracy and involves a higher patient comfort. Within the different applications, a direct comparison with ultrasound technique reveals minor differences depending on the device type. Therefore, it is advised to indicate the device type with all measurements. OCT enables precise, two-dimensional, non-contact imaging of the anterior segment in high resolution. For glaucomatous diseases, anterior segment OCT enlarges and enriches the armamentarium of glaucoma diagnostics and postoperative care of current modern glaucoma surgery.
Schlüsselwörter
OCT - Glaukom - Pachymetrie - Goniometrie - Glaukomchirurgie
Key words
OCT - glaucoma - pachymetry - goniometry - glaucoma surgery
Literatur
- 1
Addicks E M, Quigley H A, Green R. et al .
Histological characteristics of filtering blebs in glaucomatous eyes.
Arch Ophthalmol.
1983;
101
795-798
MissingFormLabel
- 2
Bagayev S N, Gelikonov V M, Gelikonov G V. et al .
Optical coherence tomography for in situ monitoring of laser corneal ablation.
J Biomed Opt.
2002;
7 (4)
633-642
MissingFormLabel
- 3
Bechmann M, Thiel M J, Neubauer A S. et al .
Central corneal thickness measurement with a retinal optical coherence tomography
device versus standard ultrasonic pachymetry.
Cornea.
2001;
20 (1)
50-54
MissingFormLabel
- 4
Carrillo M M, Trope G E, Pavlin C. et al .
Use of ultrasound biomicroscopy to diagnose Ahmed valve obstruction by iris.
Can J Ophthalmol.
2005;
40
499-451
MissingFormLabel
- 5
Dawczynski J, Koenigsdoerffer E, Augsten R. et al .
Anterior optical coherence tomography: a non-contact technique for anterior chamber
evaluation.
Graefes Arch Clin Exp Ophthalmol.
2007;
245
423-425
MissingFormLabel
- 6
Fishman G R, Pons M E, Seedor J A. et al .
Assessment of central corneal thickness using optical coherence tomography.
J Cataract Refract Surg.
2005;
31
707-711
MissingFormLabel
- 7
Fujimoto J G, Brezinski M E, Tearney G J. et al .
Optical biopsy and imaging using optical coherence tomography.
Nat Med.
1995;
1
970-972
MissingFormLabel
- 8
Geerling G, Müller M, Winter C. et al .
Intraoperative 2-Dimensional Optical Coherence Tomography as a New Tool for Anterior
Segment Surgery.
Arch Ophthalmol.
2005;
123
253-257
MissingFormLabel
- 9
Goldsmith J A, Li Y, Chalita M R. et al .
Anterior chamber width measurement by high-speed optical coherence tomography.
Ophthalmology.
2005;
112
238-244
MissingFormLabel
- 10
Guthoff R.
Confocal microscopy.
Ger J Ophthalmol.
1997;
5
495
MissingFormLabel
- 11
Hee M R, Izatt J A, Swanson E A. et al .
Optical coherence tomography of the human retina.
Arch Ophthalmol.
1995;
113
325-332
MissingFormLabel
- 12
Hoerauf H, Gordes G S, Scholz C. et al .
First experimental and clinical results with transscleral optical coherence tomography.
Ophthalmic Surg Lasers.
2000;
31
218-222
MissingFormLabel
- 13
Hoerauf H, Wirbelauer C, Scholz C. et al .
Slit-lamp-adapted optical coherence tomography of the anterior segment.
Graefes Arch Clin Exp Ophthalmol.
2000;
238
8-18
MissingFormLabel
- 14
Hoerauf H, Scholz C, Koch P. et al .
Transscleral optical coherence tomography: a new imaging method for the anterior segment
of the eye.
Arch Ophthalmol.
2002;
120
816-819
MissingFormLabel
- 15 Hoerauf H. OCT am Vorderabschnitt. Kampik A, Grehn F Augenärztliche Diagnostik Stuttgart; Thieme 2003
MissingFormLabel
- 16
Hoerauf H, Müller M, Hüttmann G. et al .
Real-time imaging of transscleral diode laser cyclophotocoagulation by optical coherence
tomography (2006).
Graefe’s Arch Clin Exp Ophthalmol.
2007;
245
385-390
MissingFormLabel
- 17
Huang D, Swanson E A, Lin C P. et al .
Optical Coherence Tomography.
Science.
1991;
22 (254)nn)
1178-1181
MissingFormLabel
- 18
Izatt J A, Hee M R, Swanson E A. et al .
Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence
tomography.
Arch Ophthalmol.
1994;
112
1584-1589
MissingFormLabel
- 19
Karandish A, Wirbelauer C, Häberle H. et al .
Reproduzierbarkeit der Goniometrie mittels spaltlampen-adaptierter optischer Kohärenztomographie.
Ophthalmologe.
2004;
101 (6)
608-613
MissingFormLabel
- 20
Karandish A, Wirbelauer C, Häberle H. et al .
OCT-Goniometrie vor und nach Iridotomie beim Engwinkelglaukom.
Ophthalmologe.
2006;
103
35-39
MissingFormLabel
- 21
Kim H Y, Budenz D L, Lee P S. et al .
Comparison of central corneal thickness using anterior segment optical coherence tomography
vs ultrasound pachymetry.
Am J Ophthalmol.
2008;
145
228-232
MissingFormLabel
- 22
Labbe A, Dupas B, Harnard P. et al .
In Vivo Confocal Microscopy Study of Blebs after Filtering Surgery.
Ophthalmology.
2005;
112
979-986
MissingFormLabel
- 23
Leung D Y, Lam D K, Yeung B Y. et al .
Comparison between central corneal thickness measurements by ultrasound pachymetry
and optical coherence tomography.
Clinical and Experimental Ophthalmology.
2006;
34
751-754
MissingFormLabel
- 24
Li H, Leung C K, Wong L. et al .
Comparative study of central corneal thickness with slit-lamp optical coherence tomography
and visante optical coherence tomography.
Ophthalmology.
2007;
Oct 2 epub ahead of print
MissingFormLabel
- 25
Li Y, Shekhar R, Huang D.
Corneal pachymetry mapping with high-speed optical coherence tomography.
Ophthalmology.
2006;
113 (5)
792-799
MissingFormLabel
- 26
Makabe R.
Vergleichende Untersuchungen der Kammerwinkelweite mit Echographie und Gonioskopie.
Klin Monatsbl Augenheilkd.
1989;
194
6-9
MissingFormLabel
- 27
Memarzadeh F, Li Y, Chopra V. et al .
Anterior segment optical coherence tomography for imaging the anterior chamber after
laser peripheral iridotomy.
Am J Ophthalmol.
2007;
143
877-879
MissingFormLabel
- 28
Memarzadeh F, Tang M, Li Y. et al .
Optical coherence tomography assessment of angle anatomy changes after cataract surgery.
Am J Ophthalmol.
2007;
144
464-465
MissingFormLabel
- 29
Messmer E M, Zapp D M, Mackert M J. et al .
In vivo confocal microscopy of filtering blebs after trabeculectomy.
Arch Ophthalmol.
2006;
124
1095-1103
MissingFormLabel
- 30
Müller M, Dahmen G, Pörksen E. et al .
Anterior Chamber Angle Measurement with Optical Coherence Tomography - An Intra- and
Interobserver-Variability-Study.
J Cataract Refract Surg.
2006;
32
1803-1808
MissingFormLabel
- 31
Müller M, Hoerauf H, Geerling G. et al .
Filtering Bleb Evaluation with Slit-Lamp adapted 1310 nm Optical Coherence Tomography.
Curr Eye Res.
2006;
31
909-915
MissingFormLabel
- 32
Müller M, Winter C, Hüttmann G. et al .
Evaluation of cyclophotocoagulation effects with 1310 nm contact optical coherence
tomography.
Curr Eye Res.
2007;
32
171-176
MissingFormLabel
- 33
Nam S M, Lee K H, Kim E K. et al .
Comparison of corneal thickness after the instillation of topical anesthetics: proparacaine
versus oxyprocaine.
Cornea.
2006;
25 (1)
51-54
MissingFormLabel
- 34
Nielsen C B, Nielsen P J.
Effect of alpha- and beta-receptor active drugs on corneal thickness.
Acta Ophthalmol.
1985;
63 (3)
351-354
MissingFormLabel
- 35
Nozaki M, Kimura H, Kojima M. et al .
Optical Coherence Tomographic Findings of the Anterior Segment after Nonpenetrating
Deep Sclerectomy.
Am J Ophthalmol.
2002;
133
837-839
MissingFormLabel
- 36
Pavlin C J, Harasiewicz K, Sherar M D. et al .
Clinical use of ultrasound biomicroscopy.
Ophthalmology.
1991;
98
287-295
MissingFormLabel
- 37
Pavlin C J, Foster F S.
Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic
resolution.
Radiol Clin North Am.
1998;
36
1047-1058
MissingFormLabel
- 38
Pawley J B.
Limitations on optical sectioning in live-cell confocal microscopy.
Scanning.
2002;
21
241-246
MissingFormLabel
- 39
Radhakrishnan S, Rollins A M, Roth J E. et al .
Real-time optical coherence tomography of the anterior segment at 1310 nm.
Arch Ophthalmol.
2001;
119
1179-1185
MissingFormLabel
- 40
Rainer G V, Petternel V, Findl O. et al .
Comparison of ultrasound pachymetry and partial coherence interferometry in the measurement
of central corneal thickness.
J Cat Refract Surg.
2002;
28
2142-2145
MissingFormLabel
- 41
Reader A L, Salz J J.
Differences among ultrasonic pachymeters in measuring corneal thickness.
J Refract Surg.
1987;
3
7-11
MissingFormLabel
- 42
Riley S F, Nairn J P, Maestre F A. et al .
Analysis of the anterior chamber angle by gonioscopy and by ultrasound biomicroscopy.
Int Ophthalmol Clin.
1994;
34
271-282
MissingFormLabel
- 43
Sarodia U, Sharkawi E, Hau S. et al .
Visualization of aqueous shunt position and patency using anterior segment optical
coherence tomography.
Am J Ophthalmol.
2007;
143
1054-1056
MissingFormLabel
- 44
Scheie H G.
Width and pigmentation of the angle of the anterior chamber: a system of grading by
gonioscopy.
Arch Ophthalmol.
1957;
4
509-513
MissingFormLabel
- 45
Shaffer R N.
A new classification of the glaucomas.
Trans Am Ophthalmol Soc.
1960;
58
219-225
MissingFormLabel
- 46
Shih C Y, Graff Zivin J S, Trokel S L. et al .
Clinical significance of central corneal thickness in the management of glaucoma.
Arch Ophthalmol.
2004;
122
1270-1275
MissingFormLabel
- 47
Spaeth G L, Azuara-Blanco A, Araujo S V. et al .
Intraobserver and interobserver agreement in evaluating the anterior chamber angle
configuration by ultrasound biomicroscopy.
J Glaucoma.
1997;
6
13-17
MissingFormLabel
- 48
Tello C, Liebmann J, Potash S D. et al .
Measurement of ultrasound biomicroscopy images.
Invest Ophthalmol Vis Sci.
1994;
35
3549-3552
MissingFormLabel
- 49
Wang N, Wang B, Zhai G. et al .
A method of measuring anterior chamber volume using the anterior segment optical coherence
tomographer and spezialized software.
Am J Ophthalmol.
2007;
143
879-881
MissingFormLabel
- 50
Wheeler N C, Morantes C M, Kristensen R M. et al .
Reliability coefficients of three corneal pachymeters.
Am J Ophthalmol.
1992;
113
645-651
MissingFormLabel
- 51
Wildner K, Müller M, Dawczynski J. et al .
Vergleichende Untersuchung zur Hornhautdickenmessung zwischen Visante® Vorderabschnitts-OCT
und Ultraschallpachymetrie.
Klin Monatsbl Augenheilkd.
2007;
224
832-836
MissingFormLabel
- 52
Wilkins J R, Puliafito C A, Hee M R. et al .
Characterization of epiretinal membranes using optical coherence tomography.
Ophthalmology.
1996;
103
2142-2151
MissingFormLabel
- 53
Wirbelauer C, Scholz C, Hoerauf H. et al .
Corneal optical coherence tomography before and immediately after excimer laser photorefractive
keratectomy.
Am J Ophthalmol.
2000;
130
693-699
MissingFormLabel
- 54
Wirbelauer C, Scholz C, Hoerauf H. et al .
Examination of the cornea using optical coherence tomography.
Ophthalmologe.
2001;
98
151-156
MissingFormLabel
- 55
Wirbelauer C, Scholz C, Hoerauf H. et al .
Noncontact corneal pachymetry with slit lamp-adapted optical coherence tomography.
Am J Ophthalmol.
2002;
133
444-450
MissingFormLabel
- 56
Wirbelauer C, Karandish A, Häberle H. et al .
Optical coherence tomography in malignant glaucoma following filtration surgery.
Br J Ophthalmol.
2003;
8
952-955
MissingFormLabel
- 57
Wirbelauer C, Aurich H, Jaroszewski J. et al .
Experimental evaluation of online optical coherence pachymetry for corneal refractive
surgery.
Graefes Arch Clin Ophthalmol.
2004;
242
24-30
MissingFormLabel
- 58
Wirbelauer C, Karandish A, Häberle H. et al .
Noncontact goniometry with optical coherence tomography.
Arch Ophthalmol.
2005;
123
179-185
MissingFormLabel
- 59
Yamamoto T, Sakuma T, Kitazawa K.
An Ultrasound Biomicroscopic Study of Filtering Blebs after Mitomycin C Trabeculectomy.
Ophthalmology.
1995;
102
1770-1776
MissingFormLabel
- 60
Zhao P S, Wong T Y, Wong W L. et al .
Comparison of central corneal thickness measurements by visante anterior segment optical
coherence tomography.
Am J Ophthalmol.
2007;
143 (6)
1047-1049
MissingFormLabel
PD Dr. med. Maya Müller
Klinik für Augenheilkunde, Universität zu Lübeck
Ratzeburger Allee 160
23538 Lübeck
Telefon: ++ 49/4 51/5 00 22 23
Fax: ++ 49/4 51/5 00 49 52
eMail: mayamueller@gmx.de