neuroreha 2018; 10(04): 161-166
DOI: 10.1055/a-0750-6207
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Grundlagen und Anwendung der Neuromodulation

Martin Lotze
,
Marie Ladda
Further Information

Publication History

Publication Date:
07 December 2018 (online)

Zusammenfassung

Die Neurostimulation ist eine attraktive Methode, um gezielt auf kortikale oder subkortikale neuronale Netzwerke Einfluss zu nehmen. Insbesondere die kortikale Stimulation ist durch nichtinvasive Methoden möglich und gut durchführbar. Subkortikale Strukturen sind dagegen meist nur durch invasive Techniken stimulierbar, die aufwendiger und mit höherem Risiko verbunden sind.

 
  • Literatur

  • 1 Bertolucci F, Chisari C, Fregni F. The potential dual role of transcallosal inhibition in post-stroke motor recovery. Restorative Neurology and Neuroscience 2018; 36: 83-97
  • 2 Conforto AB, Kaelin-Lang A, Cohen LG. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Annals of Neurology 2002; 51: 122-125
  • 3 Di Lazzaro V, Profice P, Pilato F. et al. Motor cortex plasticity predicts recovery in acute stroke. Cerebral Cortex 2010; 20: 1523-1528
  • 4 Dimyan MA, Perez MA, Auh S. et al. Nonparetic arm force does not overinhibit the paretic arm in chronic poststroke hemiparesis. Archives of Physical Medicine and Rehabilitation 2014; 95: 849-856
  • 5 Dinse HR, Kleibel N, Kalisch T. et al. Tactile coactivation resets age-related decline of human tactile discrimination. Annals of Neurology 2006; 60: 88-94
  • 6 Di Pino G, Pellegrino G, Assenza G. et al. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nature Reviews Neurology 2014; 10: 597
  • 7 Dos Santos-Fontes RL, Ferreiro de Andrade KN, Sterr A. et al. Home-based nerve stimulation to enhance effects of motor training in patients in the chronic phase after stroke: A proof-of-principle study. Neurorehabilitation and Neural Repair 2013; 27: 483-490
  • 8 Ghaziani E, Couppé C, Henkel C. et al. Electrical somatosensory stimulation followed by motor training of the paretic upper limb in acute stroke: Study protocol for a randomized controlled trial. Trials 2017; 18: 84
  • 9 Golaszewski SM, Bergmann J, Christova M. et al. Modulation of motor cortex excitability by different levels of whole-hand afferent electrical stimulation. Clinical Neurophysiology 2012; 123: 193-199
  • 10 Hebb D. The organization of behavior. Wiley; 1949
  • 11 Hummel FC, Cohen LG. Non-invasive brain stimulation: A new strategy to improve neurorehabilitation after stroke?. The Lancet Neurology 2006; 5: 708-712
  • 12 Kattenstroth JC, Kalisch T, Sczesny-Kaiser M. et al. Daily repetitive sensory stimulation of the paretic hand for the treatment of sensorimotor deficits in patients with subacute stroke: RESET, a randomized, sham-controlled trial. BMC Neurology 2018; 18: 2
  • 13 Lotze M, Braun C, Birbaumer N. et al. Motor learning elicited by voluntary drive. Brain 2003; 126: 866-872
  • 14 Mehrholz J, Elsner B. Transkranielle Gleichstromstimulation (tDCS) in der neurologischen Rehabilitation. Neuroreha 2018; 10 (04) 185-188
  • 15 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology 2000; 527: 633-639
  • 16 Nitsche MA, Schauenburg A, Lang N. et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience 2003; 15: 619-626
  • 17 Platz T. Repetitive transkranielle Magnetstimulation (rTMS) – eine Therapieoption für Schlaganfall-Betroffene?. Neuroreha 2018; 10 (04) 174-177
  • 18 Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience 2018; 1
  • 19 Stagg CJ, O’Shea J, Kincses ZT. et al. Modulation of movement-associated cortical activation by transcranial direct current stimulation. European Journal of Neuroscience 2009; 30: 1412-1423
  • 20 Stinear CM, Barber PA, Petoe M. et al. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 2012; 135: 2527-2535
  • 21 Sullivan JE, Hurley D, Hedman LD. Afferent stimulation provided by glove electrode during task-specific arm exercise following stroke. Clinical Rehabilitation 2012; 26: 1010-1020
  • 22 Takeuchi N, Tada T, Toshima M. et al. Correlation of motor function with transcallosal and intracortical inhibition after stroke. Journal of Rehabilitation Medicine 2010; 42: 962-966
  • 23 Veldman M, Maffiuletti N, Hallett M. et al. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neuroscience & Biobehavioral Reviews 2014; 47: 22-35
  • 24 Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Archives of Neurology 2004; 61: 1844-1848
  • 25 Zhang L, Xing G, Fan Y. et al. Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: A systematic review and meta-analysis. Clinical Rehabilitation 2017; 31: 1137-1153
  • 26 Zheng X, Schlaug G. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy. Frontiers in Human Neuroscience 2015; 9: 229