Klin Monbl Augenheilkd 2020; 237(09): 1087-1092
DOI: 10.1055/a-1142-6442
Experimentelle Studie

Tiefenwirkung von kaltem Atmosphärendruckplasma in der Keratitistherapie: ein Hornhautstromagewebemodell

Depth Effect of Cold Atmospheric Pressure Plasma in Keratitis Therapy: A Corneal Stroma Tissue Model
Christian Lingenfelder
1   Business Development, PHARMPUR GmbH, Königsbrunn
,
Jürgen Kampmeier
2   Augenklinik, Universitätsklinikum Ulm
,
Detlef Russ
3   Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm
,
Rainer Wittig
3   Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm
,
Christof Diener
4   Diener electronic GmbH + Co. KG, Ebhausen
,
Jens Ulrich Werner
2   Augenklinik, Universitätsklinikum Ulm
› Author Affiliations

Zusammenfassung

Die Inzidenz der mikrobiellen Keratitis steigt an und liegt bei 28 Fällen/100 000 Einwohner. Dies könnte auf das häufigere Tragen von Kontaktlinsen zurückzuführen sein. Die Keratitis kann zu Sehbehinderungen und in schweren Fällen mit Endophthalmitis zur Enukleation des betroffenen Auges führen. Zunehmende Resistenzen von Mikroorganismen gegen die Antibiotikatherapie zeigen den Bedarf an neuen therapeutischen Strategien auf. Kaltes Atmosphärendruckplasma wurde bereits erfolgreich zur Desinfektion von Oberflächen eingesetzt. Diese Studie untersucht in einem Hornhautstromagewebemodell tiefenaufgelöst die Wirksamkeit von kaltem Atmosphärendruckplasma gegen Escherichia coli.

Abstract

The incidence of microbial keratitis has been increasing and is now 28 cases/100,000 inhabitants; this may be due to the more frequent use of contact lenses. Keratitis can lead to visual impairment and in severe cases with endophthalmitis to enucleation of the affected eye. As microorganisms are becoming more resistant to antibiotic therapy, there is a need for new therapeutic strategies. Cold atmospheric pressure plasma has already been successfully used to disinfect surfaces. This study investigates the efficacy of cold atmospheric pressure plasma against Escherichia coli in a depth-resolved corneal stroma tissue model.



Publication History

Received: 05 December 2019

Accepted: 12 March 2020

Article published online:
20 May 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Jeng BH, Gritz DC, Kumar AB. et al. Epidemiology of ulcerative keratitis in Northern California. Arch Ophthalmol 2010; 128: 1022-1028
  • 2 OʼNeill EC, Yeoh J, Fabinyi DC. et al. Risk factors, microbial profiles and prognosis of microbial keratitis-associated endophthalmitis in high-risk eyes. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1457-1462
  • 3 Ni N, Nam EM, Hammersmith KM. et al. Seasonal, geographic, and antimicrobial resistance patterns in microbial keratitis: 4-year experience in Eastern Pennsylvania. Cornea 2015; 34: 296-302
  • 4 Alexandrakis G, Alfonso EC, Miller D. Shifting trends in bacterial keratitis in South Florida and emerging resistance to fluoroquinolones. Ophthalmology 2000; 107: 1497-1502
  • 5 Rupf S, Idlibi AN, Marrawi FA. et al. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PLoS One 2011; 6: e25893
  • 6 Isbary G, Morfill G, Schmidt HU. et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 2010; 163: 78-82
  • 7 Hilker L, von Woedtke T, Weltmann KD. et al. Cold atmospheric plasma: a new tool for the treatment of superficial driveline infections. Eur J Cardiothorac Surg 2017; 51: 186-187
  • 8 Fridman G, Brooks AD, Balasubramanian M. et al. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process Polym 2007; 4: 370-375
  • 9 Moisan M, Barbeau J, Crevier M. et al. Plasma sterilization. Methods and mechanisms. Pure Appl Chem 2002; 74: 349-358
  • 10 Dobrynin D, Fridman G, Friedman G. et al. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 2009; 11: 115020
  • 11 Weng CC, Wu YT, Liao JD. et al. Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time. Int J Radiat Biol 2009; 85: 362-368
  • 12 Joshi SG, Cooper M, Yost A. et al. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in escherichia coli. Antimicrob Agents Chemother 2011; 55: 1053-1062
  • 13 Brun P, Brun P, Vono M. et al. Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS One 2012; 7: e33245
  • 14 Hammann A, Huebner NO, Bender C. et al. Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol Physiol 2010; 23: 328-332
  • 15 Alekseev O, Donovan K, Limonnik V. et al. Nonthermal dielectric barrier discharge (DBD) plasma suppresses herpes simplex virus type 1 (HSV-1) replication in corneal epithelium. Transl Vis Sci Technol 2014; 3: 2
  • 16 Rosani U, Tarricone E, Venier P. et al. Atmospheric-pressure cold plasma induces transcriptional changes in ex vivo human corneas. PLoS One 2015; 10: e0133173
  • 17 Machala Z, Janda M, Hensel K. et al. Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 2007; 243: 194-201
  • 18 Kampmeier J, Werner JU, Wagner P. et al. [In vitro study of subablative Er : YAG laser and diode laser therapy vs. thermal cautery in microbial keratitis]. Klin Monatsbl Augenheilkd 2019; 236: 1331-1338
  • 19 Takeshita K, Shibato J, Sameshima T. et al. Damage of yeast cells induced by pulsed light irradiation. Int J Food Microbiol 2003; 85: 151-158
  • 20 Reitberger H, Martines E, Mohr A. et al. [Cold plasma to treat therapy-refractive corneal ulcers]. Klin Monatsbl Augenheilkd 2018; 235: 1366-1370
  • 21 Heaselgrave W, Shama G, Andrew PW. et al. Inactivation of Acanthamoeba spp. and other ocular pathogens by application of cold atmospheric gas plasma. Appl Environ Microbiol 2016; 82: 3143-3148
  • 22 Song X, Stachon T, Seitz B. et al. [Effect of photodynamic inactivation (PDI) using riboflavin-conjugated antibody against Staphylococcus aureus]. Klin Monatsbl Augenheilkd 2015; 232: 988-992