Nervenheilkunde 2021; 40(01/02): 35-42
DOI: 10.1055/a-1301-3135
Schwerpunkt

Endocannabinoidsystem und Stress

Mehr als nur ein „high“?Endocannabinoid system and stressMore than just a „high“?
Jennifer Spohrs
1   Klinik für Kinder- und Jugendpsychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
Martin Ulrich
2   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
Birgit Abler
2   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
› Author Affiliations

ZUSAMMENFASSUNG

Das wissenschaftliche Interesse am Endocannabinoidsystem hat in den vergangenen Jahren aufgrund der zunehmenden Legalisierung von medizinischem Cannabis und seiner anxiolytischen Wirkung eine breite Basis von Tierexperimenten und erste translationale Studien zu biologischen, genetischen und neurobiologischen Befunden generiert. Besonders die modulatorische Rolle von Endocannabinoiden im Rahmen von Stress- und Angsterkrankungen steht im Vordergrund und weist auf mögliche Interventionspunkte hin, um vorhandene Therapien zu verbessern. Es fehlen jedoch weiterhin Erkenntnisse und Studien zur Wirkweise am Menschen, um die Implementierung dieser therapeutischen Anknüpfungspunkte umzusetzen. Die folgende Arbeit stellt eine Übersicht mit Schwerpunkt auf der Grundlagenforschung zum Endocannabinoidsystem im Rahmen von stressbezogenen Prozessen dar.

ABSTRACT

The interest in the endocannabinoid system has, due to the increasing legalization of medical cannabis and its anxiolytic capacities, generated many rodent and first human studies investigating the biological, genetic and neurobiological basis. Especially the modulatory role in stress- and anxiety disorders has been of interest and points towards possible nodes for interventions to enhance current therapies. However, more findings and studies in humans are necessary to implement these therapeutic links. The present work gives an overview with an emphasis on basic research on the endocannabinoid system in stress-related processes.



Publication History

Article published online:
04 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Greenberg MS, Tanev K, Marin MF. et al Stress, PTSD, and dementia. Alzheimers Dement 2014; 10 (03) S155-165
  • 2 Park C, Rosenblat JD, Brietzke E. et al Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev 2019; 102: 139-152
  • 3 Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. The Lancet Oncology 2004; 5 (10) 617-625
  • 4 Howes OD, McCutcheon R, Owen MJ. et al The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry 2017; 81 (01/02) 9-20
  • 5 Kivimaki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol 2018; 15 (04) 215-229
  • 6 Godoy LD, Rossignoli MT, Delfino-Pereira P. et al A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12: 127
  • 7 Jie F, Yin G, Yang W. et al Stress in Regulation of GABA Amygdala System and Relevance to Neuropsychiatric Diseases. Front Neurosci 2018; 12: 562
  • 8 Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004; 3 (09) 771-784
  • 9 Mechoulam R, Gaoni Y. The absolute configuration of delta-1-tetrahydrocannabinol, the major active constituent of hashish. Tetrahedron Lett 1967; 12: 1109-1111
  • 10 Mechoulam R, Braun P, Gaoni Y. A stereospecific synthesis of (-)-delta 1- and (-)-delta 1(6)-tetrahydrocannabinols. J Am Chem Soc 1967; 89 (17) 4552-4554
  • 11 Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74 (02) 129-180
  • 12 Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365 6441 61-65
  • 13 Russo E, Guy GW. A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 2006; 66 (02) 234-246
  • 14 McAllister SD, Glass M. CB(1) and CB(2) receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins, leukotrienes, and essential fatty acids 2002; 66 2–3 161-171
  • 15 Coccaro EF, Hill MN, Robinson L. et al Circulating endocannabinoids and affect regulation in human subjects. Psychoneuroendocrinology 2018; 92: 66-71
  • 16 De Marchi N, De Petrocellis L, Orlando P. et al Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis 2003; 2: 5
  • 17 Hill MN, Miller GE, Carrier EJ. et al Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 2009; 34 (08) 1257-1262
  • 18 Koethe D, Hoyer C, Leweke FM. The endocannabinoid system as a target for modelling psychosis. Psychopharmacology (Berl) 2009; 206 (04) 551-561
  • 19 Laezza C, Pagano C, Navarra G. et al The Endocannabinoid System: A Target for Cancer Treatment. Int J Mol Sci 2020; 21: 3
  • 20 Li GL, Winter H, Arends R. et al Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects. Br J Clin Pharmacol 2012; 73 (05) 706-716
  • 21 Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol 2013; 64: 21-47
  • 22 Seeman P. Cannabidiol is a partial agonist at dopamine D2High receptors, predicting its antipsychotic clinical dose. Transl Psychiatry 2016; 6 (10) e920
  • 23 Wirz L, Reuter M, Felten A. et al An endocannabinoid receptor polymorphism modulates affective processing under stress. Soc Cogn Affect Neurosci 2018; 13 (11) 1177-1189
  • 24 Woodhams SG, Chapman V, Finn D. et al The cannabinoid system and pain. Neuropharmacology 2017; 124: 105-120
  • 25 Sarvet AL, Wall MM, Keyes KM. et al Self-medication of mood and anxiety disorders with marijuana: Higher in states with medical marijuana laws. Drug Alcohol Depend 2018; 186: 10-15
  • 26 Cascini F, Aiello C, Di Tanna G. Increasing delta-9-tetrahydrocannabinol (Delta-9-THC) content in herbal cannabis over time: systematic review and meta-analysis. Curr Drug Abuse Rev 2012; 5 (01/02) 32-40
  • 27 Curran HV, Freeman TP, Mokrysz C. et al Keep off the grass? Cannabis, cognition and addiction. Nat Rev Neurosci 2016; 17 (05) 293-306
  • 28 ElSohly MA, Mehmedic Z, Foster S. et al Changes in Cannabis Potency Over the Last 2 Decades 1995– 2014 Analysis of Current Data in the United States. Biol Psychiatry 2016; 79 (07) 613-619
  • 29 Englund A, Freeman TP, Murray RM. et al Can we make cannabis safer?. Lancet Psychiatry 2017; 4 (08) 643-648
  • 30 Morgan CJ, Gardener C, Schafer G. et al Sub-chronic impact of cannabinoids in street cannabis on cognition, psychotic-like symptoms and psychological well-being. Psychol Med 2012; 42 (02) 391-400
  • 31 Andrade AK, Renda B, Murray JE. Cannabinoids, interoception, and anxiety. Pharmacology, biochemistry, and behavior 2019; 180: 60-73
  • 32 Papagianni EP, Stevenson CW. Cannabinoid Regulation of Fear and Anxiety: an Update. Curr Psychiatry Rep 2019; 21 (06) 38
  • 33 Ruehle S, Rey AA, Remmers F. et al The endocannabinoid system in anxiety, fear memory and habituation. J Psychopharmacol (Oxf) 2012; 26 (01/02) 23-39
  • 34 Viveros MP, Marco EM, File SE. Endocannabinoid system and stress and anxiety responses. Pharmacology, biochemistry, and behavior 2005; 81 (02) 331-342
  • 35 Blessing EM, Steenkamp MM, Manzanares J. et al Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics 2015; 12 (04) 825-836
  • 36 Patel S, Hillard CJ. Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. The Journal of pharmacology and experimental therapeutics 2006; 318 (01/02) 304-311
  • 37 Zuardi AW, Finkelfarb E, Bueno OF. et al Characteristics of the stimulus produced by the mixture of cannabidiol with delta 9-tetrahydrocannabinol. Arch Int Pharmacodyn Ther 1981; 249 (01/02) 137-146
  • 38 Bloomfield MAP, Hindocha C, Green SF. et al The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2019; 195: 132-161
  • 39 Freeman AM, Petrilli K, Lees R. et al How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review. Neurosci Biobehav Rev 2019; 107: 696-712
  • 40 Fusar-Poli P, Crippa JA, Bhattacharyya S. et al Distinct effects of {delta}9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Arch Gen Psychiatry 2009; 66 (01/02) 95-105
  • 41 Karniol IG, Shirakawa I, Kasinski N. et al Cannabidiol interferes with the effects of delta 9 – tetrahydrocannabinol in man. Eur J Pharmacol 1974; 28 (01/02) 172-177
  • 42 Campos AC, Ortega Z, Palazuelos J. et al The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. The international journal of neuropsychopharmacology 2013; 16 (06) 1407-1419
  • 43 Lee JLC, Bertoglio LJ, Guimaraes FS. et al Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders. Br J Pharmacol 2017; 174 (19) 3242-3256
  • 44 Yarkoni T, Poldrack RA, Van Essen DC. et al Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends Cogn Sci 2010; 14 (11) 489-496
  • 45 Bisogno T, Maccarrone M. Latest advances in the discovery of fatty acid amide hydrolase inhibitors. Expert Opin Drug Discov 2013; 8 (05) 509-522
  • 46 De Petrocellis L, Ligresti A, Moriello AS. et al Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 2011; 163 (07) 1479-1494
  • 47 Elmes MW, Kaczocha M, Berger WT. et al Fatty acid-binding proteins (FABPs) are intracellular carriers for Delta9-tetrahydrocannabinol (THC) and cannabidiol (CBD). The Journal of biological chemistry 2015; 290 (14) 8711-8721
  • 48 Chessick CA, Allen MH, Thase M. et al Azapirones for generalized anxiety disorder. The Cochrane database of systematic reviews. 2006 3 CD006115
  • 49 Lutz B, Marsicano G, Maldonado R. et al The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2015; 16 (12) 705-718
  • 50 Hillard CJ. Circulating endocannabinoids: From whence do they come and where are they going?. Neuropsychopharmacology 2018; 43 (01/02) 155-172
  • 51 Gil-Ordonez A, Martin-Fontecha M, Ortega-Gutierrez S. et al Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 2018; 157: 18-32
  • 52 Gunduz-Cinar O, Hill MN, McEwen BS. et al Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci 2013; 34 (11) 637-644
  • 53 Hill MN, Kumar SA, Filipski SB. et al Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol Psychiatry 2013; 18 (10) 1125-1135
  • 54 Mayo LM, Asratian A, Linde J. et al Elevated Anandamide, Enhanced Recall of Fear Extinction, and Attenuated Stress Responses Following Inhibition of Fatty Acid Amide Hydrolase: A Randomized, Controlled Experimental Medicine Trial. Biol Psychiatry 2020; 87 (06) 538-547
  • 55 Rabinak CA, Phan KL. Cannabinoid modulation of fear extinction brain circuits: a novel target to advance anxiety treatment. Curr Pharm Des 2014; 20 (13) 2212-2217
  • 56 Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 1997; 77 (02) 299-318
  • 57 Westlake TM, Howlett AC, Bonner TI. et al Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 1994; 63 (03) 637-652
  • 58 Worley NB, Hill MN, Christianson JP. Prefrontal endocannabinoids, stress controllability and resilience: A hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85: 180-188
  • 59 Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science 2002; 296 5568 678-682
  • 60 Nyilas R, Dudok B, Urban GM. et al Enzymatic machinery for endocannabinoid biosynthesis associated with calcium stores in glutamatergic axon terminals. The Journal of neuroscience : the official journal of the Society for Neuroscience 2008; 28 (05) 1058-1063
  • 61 Howlett AC. The cannabinoid receptors. Prostaglandins Other Lipid Mediat 2002; 68 (69) 619-631
  • 62 Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 2008; 108 (05) 1687-1707
  • 63 Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96 (04) 1593-1659
  • 64 Lee SH, Ledri M, Toth B. et al Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release. The Journal of neuroscience : the official journal of the Society for Neuroscience 2015; 35 (27) 10039-10057
  • 65 Hillard CJ. Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 2000; 61 1–2 3-18
  • 66 Kim J, Alger BE. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci 2010; 13 (05) 592-600
  • 67 Morena M, Patel S, Bains JS. et al Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016; 41 (01/02) 80-102
  • 68 Sigel E, Baur R, Racz I. et al The major central endocannabinoid directly acts at GABA(A) receptors. Proc Natl Acad Sci U S A 2011; 108 (44) 18150-18155
  • 69 Castillo PE, Younts TJ, Chavez AE. et al Endocannabinoid signaling and synaptic function. Neuron 2012; 76 (01/02) 70-81
  • 70 Gunduz-Cinar O. The endocannabinoid system in the amygdala and modulation of fear. Prog Neuropsychopharmacol Biol Psychiatry 2020; 105: 110116
  • 71 Duval ER, Javanbakht A, Liberzon I. Neural circuits in anxiety and stress disorders: a focused review. Ther Clin Risk Manag 2015; 11: 115-126
  • 72 Walker EF, Diforio D. Schizophrenia: a neural diathesis-stress model. Psychol Rev 1997; 104 (04) 667-685
  • 73 Zajkowska ZE, Englund A, Zunszain PA. Towards a personalized treatment in depression: endocannabinoids, inflammation and stress response. Pharmacogenomics 2014; 15 (05) 687-698
  • 74 Musazzi L, Tornese P, Sala N. et al Acute or Chronic? A Stressful Question. Trends Neurosci 2017; 40 (09) 525-535
  • 75 Stephens MA, Wand G. Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res 2012; 34 (04) 468-483
  • 76 Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 2011; 15 (02) 85-93
  • 77 McEwen BS, Bowles NP, Gray JD. et al Mechanisms of stress in the brain. Nat Neurosci 2015; 18 (10) 1353-1363
  • 78 Gray JM, Vecchiarelli HA, Morena M. et al Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. Journal of neuroscience 2015; 35 (09) 3879-3892
  • 79 Hill MN, McLaughlin RJ, Bingham B. et al Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci U S A 2010; 107 (20) 9406-9411
  • 80 Morena M, Campolongo P. The endocannabinoid system: an emotional buffer in the modulation of memory function. Neurobiol Learn Mem 2014; 112: 30-43
  • 81 Haller J, Barna I, Barsvari B. et al Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats. Psychopharmacology (Berl) 2009; 204 (04) 607-616
  • 82 Patel S, Cravatt BF, Hillard CJ. Synergistic interactions between cannabinoids and environmental stress in the activation of the central amygdala. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2005; 30 (03) 497-507
  • 83 Mayo LM, Asratian A, Linde J. et al Protective effects of elevated anandamide on stress and fear-related behaviors: translational evidence from humans and mice. Mol Psychiatry 2018; 25: 993-1005
  • 84 McLaughlin RJ, Hill MN, Bambico FR. et al Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. European neuropsychopharmacology 2012; 22 (09) 664-671
  • 85 Hayes JP, Hayes SM, Mikedis AM. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord 2012; 2: 9
  • 86 Sumislawski JJ, Ramikie TS, Patel S. Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. Neuropsychopharmacology 2011; 36 (13) 2750-2761
  • 87 Refojo D, Schweizer M, Kuehne C. et al Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science 2011; 333 6051 1903-1907
  • 88 Dlugos A, Childs E, Stuhr KL. et al Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology 2012; 37 (11) 2416-2427
  • 89 Egmond NV, Straub VM, der Stelt MV. Targeting Endocannabinoid Signaling: FAAH and MAG Lipase Inhibitors. Annu Rev Pharmacol Toxicol 2021; 61: 1
  • 90 Navarrete F, Garcia-Gutierrez MS, Jurado-Barba R. et al Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11: 315