Synlett 2021; 32(14): 1379-1384
DOI: 10.1055/a-1479-8264
synpacts

Transition-Metal-Catalyzed Alkylation of Polyfluoroarenes through C–F Bond Cleavage

Qian Zhang
a   Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China
,
Tao Xiong
a   Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China
,
Qian Zhang
a   Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. of China
› Author Affiliations
The authors thank the National Natural Science Foundation of China (grants nos. 21831002 and 21672033), the Fundamental Research Funds for the Central Universities, and the Ten Thousand Talents Program for their generous financial support.


Abstract

The polyfluoroarenes are a subgroup of organofluorines that are widely utilized in both medicinal chemistry and materials science. We briefly summarize recent advances in the synthesis of these important compounds, with particular attention to our recent CuH-catalyzed defluorinative alkylation of polyfluoroarenes with alkenes in a highly site-selective C–F bond-cleavage fashion.

1 Introduction

2 Transition-Metal-Catalyzed Alkylation through Selective C–F Bond Cleavage

3 CuH-Catalyzed Defluorinative Alkylation of Polyfluoroarenes with Alkenes

4 Summary and Outlook



Publication History

Received: 05 April 2021

Accepted: 12 April 2021

Accepted Manuscript online:
12 April 2021

Article published online:
28 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1d Jeschke P. ChemBioChem 2004; 5: 570
    • 1e Ametamey SM, Honer M, Schubiger PA. Chem. Rev. 2008; 108: 1501
    • 1f Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 1g Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 2a Brown JM, Gouverneur V. Angew. Chem. Int. Ed. 2009; 48: 8610
    • 2b Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 2c Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 2d Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
    • 2e Preshlock S, Tredwell M, Gouverneur V. Chem. Rev. 2016; 116: 719
    • 3a Weck M, Dunn AR, Matsumoto K, Coates GW, Lobkovsky EB, Grubbs RH. Angew. Chem. Int. Ed. 1999; 38: 2741
    • 3b Sakamoto Y, Suzuki T, Miura A, Fujikawa H, Tokito S, Taga Y. J. Am. Chem. Soc. 2000; 122: 1832
    • 3c Nitschke JR, Tilley TD. J. Am. Chem. Soc. 2001; 123: 10183
    • 3d Tsuzuki T, Shirasawa N, Suzuki T, Tokito S. Adv. Mater (Weinheim, Ger.) 2003; 15: 1455
    • 3e Meyer EA, Castellano RK, Diederich F. Angew. Chem. Int. Ed. 2003; 42: 1210
    • 3f Babudri F, Farinola GM, Naso F, Ragni R. Chem. Commun. 2007; 1003
    • 4a Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
    • 4b Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2008; 130: 1128
    • 4c Simonetti M, Perry GJ. P, Cambeiro XC, Juliá-Hernández F, Arokianathar JN, Larrosa I. J. Am. Chem. Soc. 2016; 138: 3596
    • 4d Li W, Yuan D, Wang G, Zhao Y, Xie J, Li S, Zhu C. J. Am. Chem. Soc. 2019; 141: 3187
    • 5a Zhang X, Fan S, He C.-Y, Wan X, Min Q.-Q, Yang J, Jiang Z.-X. J. Am. Chem. Soc. 2010; 132: 4506
    • 5b Nett AJ, Zhao W, Zimmerman PM, Montgomery J. J. Am. Chem. Soc. 2015; 137: 7636
  • 6 Wei Y, Zhao H, Kan J, Su W, Hong M. J. Am. Chem. Soc. 2010; 132: 2522
    • 7a Fan S, Chen F, Zhang X. Angew. Chem. Int. Ed. 2011; 50: 5918
    • 7b Yao T, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2011; 50: 2990
    • 7c Xie W, Chang S. Angew. Chem. Int. Ed. 2016; 55: 1876
    • 8a Fan S, He C.-Y, Zhang X. Chem. Commun. 2010; 46: 4926
    • 8b Sun Z.-M, Zhang J, Manan RS, Zhao P. J. Am. Chem. Soc. 2010; 132: 6935
    • 8c Xu S, Wu G, Ye F, Wang X, Li H, Zhao X, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2015; 54: 4669
    • 8d Xie W, Heo J, Kim D, Chang S. J. Am. Chem. Soc. 2020; 142: 7487
  • 9 Xie W, Yoon JH, Chang S. J. Am. Chem. Soc. 2016; 138: 12605
    • 10a Meier G, Braun T. Angew. Chem. Int. Ed. 2009; 48: 1546
    • 10b Clot E, Eisenstein O, Jasim N, Macgregor SA, McGrady JE, Perutz RN. Acc. Chem. Res. 2011; 44: 333
    • 10c Kuehnel MF, Lentz D, Braun T. Angew. Chem. Int. Ed. 2013; 52: 3328
    • 10d Aizenberg M, Milstein D. Science 1994; 265: 359
    • 10e Aizenberg M, Milstein D. J. Am. Chem. Soc. 1995; 117: 8674
    • 10f Schaub T, Fischer P, Steffen A, Braun T, Radius U, Mix A. J. Am. Chem. Soc. 2008; 130: 9304
    • 10g Lv H, Zhan J.-H, Cai Y.-B, Yu Y, Wang B, Zhang J.-L. J. Am. Chem. Soc. 2012; 134: 16216
    • 10h Fischer P, Götz K, Eichhorn A, Radius U. Organometallics 2012; 31: 1374
    • 10i Zhan J.-H, Lv HB, Yu Y, Zhang J.-L. Adv. Synth. Catal. 2012; 354: 1529
    • 10j Lv HB, Cai Y.-B, Zhang J.-L. Angew. Chem. Int. Ed. 2013; 52: 3203
    • 10k Senaweera SM, Singh A, Weaver JD. J. Am. Chem. Soc. 2014; 136: 3002
    • 10l Lu J, Khetrapal NS, Johnson JA, Zeng XC, Zhang J. J. Am. Chem. Soc. 2016; 138: 15805
    • 10m Cybulski MK, Nicholls JE, Lowe JP, Mahon MF, Whittlesey MK. Organometallics 2017; 36: 2308
    • 11a Braun T, Ahijado Salomon M, Altenhöer K, Teltewskoi M, Hinze S. Angew. Chem. Int. Ed. 2009; 48: 1818
    • 11b Teltewskoi M, Panetier JA, Macgregor SA, Braun T. Angew. Chem. Int. Ed. 2010; 49: 3947
    • 11c Lindup RJ, Marder TB, Perutz RN, Whitwood AC. Chem. Commun. 2007; 3664
    • 11d Liu XW, Echavarren J, Zarate C, Martin R. J. Am. Chem. Soc. 2015; 137: 12470
    • 11e Niwa T, Ochiai H, Watanabe Y, Hosoya T. J. Am. Chem. Soc. 2015; 137: 14313
    • 11f Kalläne SI, Teltwskoi M, Braun T, Braun B. Organometallics 2015; 34: 1156
    • 11g Zhou J, Kuntze-Fechner MW, Bertermann R, Paul US. D, Berthel JH. J, Friedrich A, Du Z, Marder TB, Radius U. J. Am. Chem. Soc. 2016; 138: 5250
    • 11h Tian Y.-M, Guo X.-N, Kuntze-Fechner MW, Krummenacher I, Braunschweig H, Radius U, Steffen A, Marder TB. J. Am. Chem. Soc. 2018; 140: 17612

      For Ni-catalyzed arylations, see:
    • 12a Yoshikai N, Mashima H, Nakamura E. J. Am. Chem. Soc. 2005; 127: 17978
    • 12b Schaub T, Backes M, Radius U. J. Am. Chem. Soc. 2006; 128: 15964
    • 12c Sun AD, Love JA. Org. Lett. 2011; 13: 2750
    • 12d Tobisu M, Xu T, Shimasaki T, Chatani N. J. Am. Chem. Soc. 2011; 133: 19505
    • 12e Nakamura Y, Yoshikai N, Ilies L, Nakamura E. Org. Lett. 2012; 14: 3316
    • 12f Ohashi M, Saijo H, Shibata M, Ogoshi S. Eur. J. Org. Chem. 2013; 443
    • 12g Saijo H, Sakaguchi H, Ohashi M, Ogoshi S. Organometallics 2014; 33: 3669
    • 12h Zhou J, Berthel JH. J, Kuntze-Fechner MW, Friedrich A, Marder TB, Radius U. J. Org. Chem. 2016; 81: 5789
    • 12i Zhu F, Wang Z.-X. J. Org. Chem. 2014; 79: 4285

    • For Pd-catalyzed arylations, see:
    • 12j Macgregor SA, Roe DC, Marshall WJ, Bloch KM, Bakhmutov VI, Grushin VV. J. Am. Chem. Soc. 2005; 127: 15304
    • 12k Cargill MR, Sandford G, Tadeusiak AJ, Yufit DS, Howard JA. K, Kilickiran P, Nelles G. J. Org. Chem. 2010; 75: 5860
    • 12l Yu D, Lu L, Shen Q. Org. Lett. 2013; 15: 940
    • 12m Ohashi M, Doi R, Ogoshi S. Chem. Eur. J. 2014; 20: 2040
    • 12n Luo Z.-J, Zhao H.-Y, Zhang X. Org. Lett. 2018; 20: 2543
    • 13a Wang T, Alfonso BJ, Love JA. Org. Lett. 2007; 9: 5629
    • 13b Buckley HL, Sun AD, Love JA. Organometallics 2009; 28: 6622
    • 13c Sun AD, Love JA. J. Fluorine Chem. 2010; 131: 1237
    • 13d Sun AD, Leung K, Restivo AD, LaBerge NA, Takasaki H, Love JA. Chem. Eur. J. 2014; 20: 3162
    • 13e Yang X, Sun H, Zhang S, Li X. J. Organomet. Chem. 2013; 723: 36
    • 13f Xiao S.-H, Xiong Y, Zhang X.-X, Cao S. Tetrahedron 2014; 70: 4405
  • 14 Guo H, Kong F, Kanno K.-i, He J, Nakajima K, Takahashi T. Organometallics 2006; 25: 2045
    • 15a Iwasaki T, Fukuoka A, Min X, Yokoyama W, Kuniyasu H, Kambe N. Org. Lett. 2016; 18: 4868
    • 15b Iwasaki T, Okamoto K, Kuniyasu H, Kambe N. Chem. Lett. 2017; 46: 1504
    • 15c Iwasaki T, Min X, Fukuoka A, Zhu L, Qiu R, Yang T, Ehara M, Sudalai A, Kambe N. J. Org. Chem. 2018; 83: 9267
    • 16a Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
    • 16b Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
    • 16c Fujihara T, Semba K, Terao J, Tsuji Y. Catal. Sci. Technol. 2014; 4: 1699
    • 16d Pirnot MT, Wang Y.-M, Buchwald SL. Angew. Chem. Int. Ed. 2016; 55: 48
    • 16e Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
    • 16f Chen J, Guo Z, Lu Z. Chin. J. Chem. 2018; 36: 1075
    • 16g Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
    • 17a Semba K, Ariyama K, Zheng H, Kameyama R, Sakaki S, Nakao Y. Angew. Chem. Int. Ed. 2016; 55: 6275
    • 17b Friis SD, Pirnot MT, Buchwald SL. J. Am. Chem. Soc. 2016; 138: 8372
    • 17c Friis SD, Pirnot MT, Dupuis LN, Buchwald SL. Angew. Chem. Int. Ed. 2017; 56: 7242
    • 17d Armstrong MK, Goodstein MB, Lalic G. J. Am. Chem. Soc. 2018; 140: 10233
    • 17e Armstrong MK, Lalic G. J. Am. Chem. Soc. 2019; 141: 6173
    • 17f Kortman GD, Hull KL. ACS Catal. 2017; 7: 6220
    • 18a Xu G, Zhao H, Fu B, Cang A, Zhang G, Zhang Q, Xiong T, Zhang Q. Angew. Chem. Int. Ed. 2017; 56: 13130
    • 18b Xu G, Fu B, Zhao H, Li Y, Zhang G, Wang Y, Xiong T, Zhang Q. Chem. Sci. 2019; 10: 1802
    • 18c Fu B, Yuan X, Li Y, Wang Y, Zhang Q, Xiong T, Zhang Q. Org. Lett. 2019; 21: 3576
    • 18d Wang H, Zhang G, Zhang Q, Wang Y, Li Y, Xiong T, Zhang Q. Chem. Commun. 2020; 56: 1819
    • 18e Zhang G, Liang Y, Qin T, Xiong T, Liu S, Guan W, Zhang Q. CCS Chem. 2020; 2: 1737
  • 19 Li X, Fu B, Zhang Q, Yuan X, Zhang Q, Xiong T, Zhang Q. Angew. Chem. Int. Ed. 2020; 59: 23056