Radiologie up2date 2022; 22(02): 137-155
DOI: 10.1055/a-1718-8874
Neuroradiologie

Differenzialdiagnose der zervikalen Myelitis

Differential Diagnosis of Cervical Myelopathies
Stefan Weidauer
,
Christophe Arendt

Zusammenfassung

Die breite Differenzialdiagnose intradural bedingter zervikaler Myelopathien umfasst neben entzündlichen und infektiösen Ursachen auch vaskuläre, metabolische, neoplastische und hereditär degenerative Erkrankungen. Die spinale Bildgebung hat daher auch im Hinblick auf eine frühzeitige und zielgerichtete Therapie eine zentrale Stellung. In dieser Übersichtsarbeit werden typische Krankheitsbilder und Differenzialdiagnosen dargestellt.

Abstract

The broad differential diagnosis of intradural cervical myelopathies includes inflammatory and infectious etiologies as well as vascular, metabolic, neoplastic and hereditary degenerative diseases. Therefore, spinal imaging has a central importance also with regard to early and targeted therapy. In this review, typical clinical features are presented and strategies for differential diagnosis are provided on the basis of characteristic lesion patterns and indicative neuroradiological findings.

Kernaussagen
  • Klinisch-neurologisch werden eine akute transverse (ATM) und eine akute partiell transverse (APTM) Myelitis unterschieden.

  • Die APTM mit einer longitudinalen Ausdehnung kleiner 2 WK-Höhen stellt häufig die Ouvertüre einer MS dar.

  • MS-assoziierte spinale Läsionen sind häufig ovalär und kurzstreckig und liegen peripher mit Kontakt zum Liquorraum.

  • Hilfreich für die Differenzierung von Myelitiden sind folgende Läsionsmuster:

    • langstreckig (LETM)

    • kurzstreckig, ovoid oder peripher lokalisiert

    • Poliomyelitis-ähnlich

    • granulomatös

  • Die longitudinale Ausdehnung über 3 WK (LETM), eine Signalabsenkung auf den T1w Aufnahmen und eine betont zentrale Myelonaffektion sind richtungweisend für eine NMOSD.

  • Wichtig ist die Untersuchung von AQP4-, MOG- und GFAP-AK für die weitere Differenzierung autoimmun vermittelter Myelitiden.

  • Essenziell ist die ergänzende zerebrale Bildgebung bei Myelitiden.

  • Die heterogene Ätiopathogenese nicht entzündlicher Myelopathien umfasst vaskuläre, metabolische, neoplastische und hereditär degenerative Erkrankungen.

  • Perimedulläre „flow voids“ sind typisch für eine durale AV-Fistel und eine spinale AVM.



Publication History

Article published online:
02 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Weidauer S, Wagner M, Nichtweiß M. Magnetic Resonance Imaging and Clinical Features in Acute and Subacute Myelopathies. Clin Neuroradiol 2017; 27: 417-433
  • 2 Oertel F, Scheel M, Chien C. et al. Differentialdiagnostik autoimmun-entzündlicher Rückenmarkserkrankungen. Nervenarzt 2021; 92: 293-306
  • 3 Hegen H, Reindl M. Recent developments in MOG-IgG associated neurological disorders. Ther Adv Neurol Disord 2020; 13: 1-20
  • 4 Schmalstieg W, Weinshenker BG. Approach to acute or subacute myelopathy. Neurology 2010; 75: S2-S8
  • 5 Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging 2014; 40: 1267-1279
  • 6 Trebst C, Raab P, Voss EV. et al. Longitudinal extensive transverse myelitis – itʼs not all neuromyelitis optica. Nat Rev Neurol 2011; 7: 688-698
  • 7 The Transverse Myelitis Consortium Working Group Members. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 2002; 59: 499-505
  • 8 Scott TF. Nosology of idiopathic transverse myelitis syndromes. Acta Neurol Scand 2007; 115: 371-376
  • 9 Nichtweiß M, Weidauer S. Acute transverse Myelitis: clinical Features, Pathophysiology, and Treatment Options. In: Minagar A. ed. Neuroinflammation. London, San Diego, Cambridge, Oxford: Elsevier Academic Press; 2018: 141-161
  • 10 Nedeltchev K, Loher TJ, Stepper F. et al. Long-term outcome of acute spinal cord ischemia syndrome. Stroke 2004; 35: 560-565
  • 11 Mariano R, Flanagan EP, Weinshenker GB. et al. A practical approach to the diagnosis of spinal cord lesions. Pract Neurol 2018; 18: 187-200
  • 12 Weidauer S, Nichtweiß M, Hattingen E. et al. Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology 2015; 57: 241-257
  • 13 Holland NR. Acute myelopathy with normal imaging. J Child Neurol 2013; 28: 648-650
  • 14 Tanenbaum LN. Clinical applications of diffusion imaging in the spine. Magn Reson Imaging Clin N Am 2013; 21: 299-320
  • 15 Wingerchuk DM, Lennon VA, Lucchinetti CF. et al. The spectrum of neuromyelitis optica. Lancet Neurol 2007; 6: 805-815
  • 16 Wingerchuk DM, Banwell B, Bennett JL. et al. International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177-189
  • 17 Lucchinetti CF, Guo Y, Popescu BF. et al. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathology 2014; 24: 83-97
  • 18 Pekcevik Y, Mitchell CH, Mealy MA. et al. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Mult Scler 2016; 22: 302-311
  • 19 Zalewsi NL, Morris PP, Weinshenker BG. et al. Ring-enhancing spinal cord lesions in Neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiatry 2017; 88: 218-225
  • 20 Flanagan EP, Weinshenker BG, Krecke KN. et al. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol 2015; 72: 81-87
  • 21 Perez Giraldo GS, Ortiz Garcia JG. Immune-Mediated Disorders Affecting the Spinal Cord and the Spine. Curr Neurol Neurosci Rep 2021; 21: 3
  • 22 Dutra BG, da Rocha AJ, Hoffmann Nunes R. et al. Neuromyelitis Optica Spectrum Disorders: Spectrum of MR Imaging Findings and Their Differential Diagnosis. Radiographics 2018; 38: 169-193
  • 23 Alper G. Acute Disseminated Encephalomyelitis. J Child Neurol 2012; 27: 1408-1425
  • 24 Padilha I, Fonseca A, Pettengill A. et al. Pediatric multiple sclerosis: from clinical basis to imaging spectrum and differential diagnosis. Pediatr Radiol 2020; 50: 776-792
  • 25 Eckstein C, Saidha S, Levy M. A differential diagnosis of central nervous system demyelination: beyond multiple sclerosis. J Neurol 2012; 259: 801-816
  • 26 Weidauer S, Raab P, Hattingen E. Diagnostic Approach in Multiple Sclerosis with MRI: an Update. Clin Imaging 2021; 78: 276-285
  • 27 Birnbaum J, Petri M, Thompson R. et al. Distinct subtypes of myelitis in systemic lupus erythematosus. Arthritis Rheum 2009; 60: 3378-3387
  • 28 Flanagan EP, Kaufmann TJ, Krecke KN. et al. Discriminating long myelitis of Neuromyelitis Optica from sarcoidosis. Ann Neurol 2016; 79: 437-447
  • 29 Thompson AJ, Banwell BL, Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162-173
  • 30 Wattjes M, Ciccarelli O, Reich DS. et al. MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021; 20: 653-670
  • 31 Oppenheimer DR. The cervical cord in multiple sclerosis. Neuropath Appl Neurob 1978; 4: 151-162
  • 32 Miller DH, Weinshenker BG, Filippi M. et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler 2008; 14: 1157-1174
  • 33 Brownlee W, Hardy TA, Fazekas F. et al. Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017; 389: 1336-1346
  • 34 Maloney JA, Mirsky DM, Messacar K. et al. MRI findings in children with acute flaccid paralysis and cranial nerve dysfunction occurring during the 2014 Enterovirus D68 outbreak. AJNR Am J Neuroradiol 2015; 36: 245-250
  • 35 Lebouteux MV, Franques J, Guillevin R. et al. Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. Eur J Neurol 2014; 21: 1233-1241
  • 36 Krampla W, Aboul-Enein F, Jecel J. et al. Spinal cord lesions in patients with Neuromyelitis optica: a retrospective long-term MRI follow-up study. Eur Radiol 2009; 19: 2535-2543
  • 37 Kira J, Isobe N, Kawano Y. et al. Atopic myelitis with focal amyotrophy: a possible link to Hopkins syndrome. J Neurol Sci 2008; 269: 143-151
  • 38 Flanagan EP, Krecke KN, Marsh RW. et al. Specific pattern of gadolinium enhancement in spondylotic myelopathy. Ann Neurol 2014; 76: 54-65
  • 39 Nichtweiß M, Hattingen E, Weidauer S. Metabolic-toxic Diseases and atrophic Changes of the spinal Cord. In: Hattingen E, Weidauer S, Setzer M, Klein J, Vrionis K. eds. Diseases of the spinal Cord – novel Imaging, Diagnosis and Treatment. Heidelberg: Springer; 2015: 369-387
  • 40 van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134: 351-382
  • 41 Huang HY, Shah LM, McNally JS. et al. COVID-19-Associated Myelitis involving the Dorsal and Lateral White Matter Tracts: A Case Series and Review of the Literature. AJNR Am J Neuroradiol 2021; 42: 1912-1917
  • 42 Krings T. Vascular malformations of the spine and spinal cord. Clin Neuroradiol 2010; 20: 5-24
  • 43 Atkinson JL, Miller GM, Krauss WE. et al. Clinical and radiographic features of dural arteriovenous fistula, a treatable cause of myelopathy. Mayo Clin Proc 2001; 76: 1120-1130
  • 44 Whittam D, Huda S, Gibbons E. et al. A case series of intracranial dural arteriovenous fistulae mimicking cervical myelitis: a diagnosis not to be missed. J Neurol 2021; 268: 4680-4686