Klin Monbl Augenheilkd
DOI: 10.1055/a-1938-4491
Klinische Studie

Reproducibility, Repeatability, and Correlation of Central Corneal Thickness Measurement with the Pentacam Scheimpflug System and Ultrasound Pachymetry

Reproduzierbarkeit, Wiederholbarkeit und Korrelation der zentralen Hornhautdickenmessung mit dem Pentacam-Scheimpflug-System und Ultraschall-Pachymetrie
Yolanda Macias-Rodriguez
Instituto de Oftalmologia y Ciencias Visuales, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
,
Instituto de Oftalmologia y Ciencias Visuales, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
,
Instituto de Oftalmologia y Ciencias Visuales, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
,
Jose V. Reyes-Arena
Instituto de Oftalmologia y Ciencias Visuales, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
,
I. Jocelyn Rivera-Alvarado
Instituto de Oftalmologia y Ciencias Visuales, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
,
Julio C. Hernandez-Camarena
Instituto de Oftalmologia y Ciencias Visuales, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
,
Instituto de Oftalmologia y Ciencias Visuales, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
› Author Affiliations

Abstract

Background/Aim The importance of an accurate determination of central corneal thickness (CCT) relies on its diagnostic and therapeutic implications in glaucoma, corneal ectasias, corneal edema and endothelial function monitoring, and refractive surgery suitability, among others. We aimed to analyze the repeatability, reproducibility, correlation, and laterality variations of CCT measurements performed with the Pentacam HR and the standard of care ultrasound A-scan (USP).

Methods A cross-sectional study including CCT measurements of healthy individuals was performed by three independent examiners with the Pentacam HR and USP. Intra-observer and inter-observer variations were calculated with intra-class correlation coefficients (ICCs). Bland-Altman plots and 95% limits of agreement (95% LoA) were used to assess the agreement between devices. Linear correlation was calculated with Pearsonʼs coefficient.

Results Thirty individuals (60 eyes), including 10 (33.3%) men and 20 (66.6%) women, with a mean age of 30.0 ± 9.1 years, were studied. No statistical differences were found in CCT measurements between Pentacam HR (range 500 – 609 µm) and USP (range 498 – 628 µm). There was a high degree of correlation in repeatability and reproducibility of each independent device (ICC > 0.90). Pearsonʼs correlation between 1 vs. 2, 2 vs. 3, and 3 vs. 1 Pentacam HR attempts were 0.914, 0.958, and 0.925, respectively (p < 0.001). Corresponding results for USP were 0.957, 0.957, and 0.943 (p < 0.001). The Pentacam HR tended to overestimate CCT by a mean difference of 3.77 µm (95% LoA, − 24.9 – 18.4). Right eyes were also overestimated (− 3.6 ± 14.1 µm) with the Pentacam HR device, whereas left eyes were underestimated (1.3 ± 11.1 µm).

Conclusions The Pentacam HR device provides reliable operator-independent estimates of CCT. Right eyes exhibited a tendency to overestimate with the Pentacam HR. We suspect this difference is due to USP underestimation related to patientsʼ position while performing the study. In clinically relevant scenarios, performing a third measurement and cautiously measuring right eyes can provide higher accuracy.

Zusammenfassung

Hintergrund Die Bedeutung einer genauen Bestimmung der zentralen Hornhautdicke (CCT) ergibt sich u. a. aus ihren diagnostischen und therapeutischen Implikationen bei Glaukom, Hornhautektasie, Hornhautödem, Überwachung der Endothelfunktion und der Eignung für refraktive Chirurgie. Ziel der Studie war es, die Wiederholbarkeit, Reproduzierbarkeit, Korrelation und laterale Variationen von CCT-Messungen mittels Pentacam-HR und Standard-Ultraschall-A-Scan (USP) zu analysieren.

Methoden Es wurde eine Querschnittsstudie mit CCT-Messungen an gesunden Personen durchgeführt, die von 3 unabhängigen Untersuchern mittels Pentacam-HR und USP vorgenommen wurde. Die Abweichungen zwischen Intra-Beobachter und Inter-Beobachter wurden mit Intraklassen-Korrelationskoeffizienten (ICCs) berechnet. Bland-Altman-Plots und 95%-Übereinstimmungsgrenzen (95%-LoA) wurden verwendet, um die Übereinstimmung zwischen den Geräten zu bewerten. Die lineare Korrelation wurde mit dem Pearson-Koeffizienten berechnet.

Ergebnisse 30 Personen (60 Augen), 10 (33,3%) Männer und 20 (66,6%) Frauen mit einem Durchschnittsalter von 30,0 ± 9,1 Jahren wurden untersucht. Es wurden keine statistischen Unterschiede in den CCT-Messungen zwischen Pentacam-HR (Bereich 500 – 609 µm) und USP (Bereich 498 – 628 µm) festgestellt. Es gab einen hohen Korrelationsgrad bei der Wiederholbarkeit und Reproduzierbarkeit jedes unabhängigen Geräts (ICC > 0,90). Die Pearson-Korrelation zwischen 1 vs. 2, 2 vs. 3 und 3 vs. 1 Pentacam-HR-Versuchen war jeweils 0,914, 0,958 bzw. 0,925 (p < 0,001). Die entsprechenden Ergebnisse für USP waren 0,957, 0,957 bzw. 0,943 (p < 0,001). Die Pentacam-HR überschätzte die CCT tendenziell um eine mittlere Differenz von 3,77 µm (95%-LoA, − 24,9 – 18,4). Das rechte Auge wurde mit dem Pentacam-HR-Gerät ebenfalls überschätzt (− 3,6 ± 14,1 µm), während das linke Auge unterschätzt wurde (1,3 ± 11,1 µm).

Schlussfolgerung Das Pentacam-HR-Gerät liefert zuverlässige, bedienerunabhängige CCT-Schätzungen. Das rechte Auge zeigte eine Tendenz zur Überschätzung mit der Pentacam-HR. Wir vermuten, dass ein solcher Unterschied auf eine USP-Unterschätzung in Bezug auf die Position des Patienten während der Durchführung der Studie zurückzuführen ist. In klinisch relevanten Szenarien kann die Durchführung einer 3. Messung des rechten Auges eine höhere Genauigkeit bieten.



Publication History

Received: 11 May 2022

Accepted: 05 September 2022

Accepted Manuscript online:
07 September 2022

Article published online:
11 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chen S, Huang J, Wen D. et al. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Acta Ophthalmol 2012; 90: 449-455
  • 2 Desmond T, Arthur P, Watt K. Comparison of central corneal thickness measurements by ultrasound pachymetry and 2 new devices, Tonoref III and RS-3000. Int Ophthalmol 2019; 39: 917-923
  • 3 Lackner B, Schmidinger G, Pieh S. et al. Repeatability and reproducibility of central corneal thickness measurement with Pentacam, Orbscan, and ultrasound. Optom Vis Sci 2005; 82: 892-899
  • 4 Rainer G, Petternel V, Findl O. et al. Comparison of ultrasound pachymetry and partial coherence interferometry in the measurement of central corneal thickness. J Cataract Refract Surg 2002; 28: 2142-2145
  • 5 Nam SM, Lee HK, Kim EK. et al. Comparison of corneal thickness after the instillation of topical anesthetics: proparacaine versus oxybuprocaine. Cornea 2006; 25: 51-54
  • 6 Pillunat KR, Waibel S, Spoerl E. et al. Comparison of Central Corneal Thickness Measurements Using Optical and Ultrasound Pachymetry in Glaucoma Patients and Elderly and Young Controls. J Glaucoma 2019; 28: 540-545
  • 7 Beutelspacher SC, Serbecic N, Scheuerle AF. Assessment of central corneal thickness using OCT, ultrasound, optical low coherence reflectometry and Scheimpflug pachymetry. Eur J Ophthalmol 2011; 21: 132-137
  • 8 Cinar Y, Cingu AK, Turkcu FM. et al. Comparison of central corneal thickness measurements with a rotating scheimpflug camera, a specular microscope, optical low-coherence reflectometry, and ultrasound pachymetry in keratoconic eyes. Semin Ophthalmol 2015; 30: 105-111
  • 9 Ucakhan OO, Ozkan M, Kanpolat A. Corneal thickness measurements in normal and keratoconic eyes: Pentacam comprehensive eye scanner versus noncontact specular microscopy and ultrasound pachymetry. J Cataract Refract Surg 2006; 32: 970-977
  • 10 OʼDonnell C, Maldonado-Codina C. Agreement and repeatability of central thickness measurement in normal corneas using ultrasound pachymetry and the OCULUS Pentacam. Cornea 2005; 24: 920-924
  • 11 Kumar M, Shetty R, Jayadev C. et al. Repeatability and agreement of five imaging systems for measuring anterior segment parameters in healthy eyes. Indian J Ophthalmol 2017; 65: 288-294
  • 12 Jin G, Liu Z, Wang L. et al. Corneal Biometric Features and Their Association With Axial Length in High Myopia. Am J Ophthalmol 2021; 238: 45-51
  • 13 Hon Y, Wan K, Chen GZ. et al. Diurnal Variation of Corneal Tangent Modulus in Normal Chinese. Cornea 2016; 35: 1600-1604
  • 14 Shankar H, Taranath D, Santhirathelagan CT. et al. Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg 2008; 34: 103-113
  • 15 Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. 3rd ed.. ed. Upper Saddle River, NJ: Pearson/Prentice Hall; 2009
  • 16 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310
  • 17 Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8: 135-160
  • 18 Armstrong RA. Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol Opt 2013; 33: 7-14
  • 19 Barkana Y, Gerber Y, Elbaz U. et al. Central corneal thickness measurement with the Pentacam Scheimpflug system, optical low-coherence reflectometry pachymeter, and ultrasound pachymetry. J Cataract Refract Surg 2005; 31: 1729-1735
  • 20 Bayhan HA, Aslan Bayhan S, Can I. Comparison of central corneal thickness measurements with three new optical devices and a standard ultrasonic pachymeter. Int J Ophthalmol 2014; 7: 302-308
  • 21 de Sanctis U, Missolungi A, Mutani B. et al. Reproducibility and repeatability of central corneal thickness measurement in keratoconus using the rotating Scheimpflug camera and ultrasound pachymetry. Am J Ophthalmol 2007; 144: 712-718
  • 22 Al-Mezaine HS, Al-Amro SA, Kangave D. et al. Comparison between central corneal thickness measurements by oculus pentacam and ultrasonic pachymetry. Int Ophthalmol 2008; 28: 333-338
  • 23 González-Méijome JM, Cerviño A, Yebra-Pimentel E. et al. Central and peripheral corneal thickness measurement with Orbscan II and topographical ultrasound pachymetry. J Cataract Refract Surg 2003; 29: 125-132
  • 24 Nemeth G, Tsorbatzoglou A, Kertesz K. et al. Comparison of central corneal thickness measurements with a new optical device and a standard ultrasonic pachymeter. J Cataract Refract Surg 2006; 32: 460-463
  • 25 Paul T, Lim M, Starr CE. et al. Central corneal thickness measured by the Orbscan II system, contact ultrasound pachymetry, and the Artemis 2 system. J Cataract Refract Surg 2008; 34: 1906-1912
  • 26 Francis BA, Varma R, Chopra V. et al. Intraocular pressure, central corneal thickness, and prevalence of open-angle glaucoma: the Los Angeles Latino Eye Study. Am J Ophthalmol 2008; 146: 741-746
  • 27 Gordon MO, Beiser JA, Brandt JD. et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 714-720
  • 28 Salouti R, Razeghinejad R, Masihpour N. et al. Agreement in central corneal thickness measurement between Corvis ST and ocular response analyzer. Int Ophthalmol 2020; 40: 2563-2567
  • 29 Alkhodari HT. Distribution of central corneal thickness and intraocular pressure in emmetropic eyes of healthy children of Palestine: a representative cross-sectional study. Int J Ophthalmol 2019; 12: 496-503
  • 30 Sakalar YB, Keklikci U, Unlu K. et al. Distribution of central corneal thickness and intraocular pressure in a large population of Turkish school children. Ophthalmic Epidemiol 2012; 19: 83-88