Synlett 2023; 34(10): 1087-1097
DOI: 10.1055/a-2007-9342
account

Total Synthesis of Fused Polycyclic Alkaloids Based on Oxidative Phenolic Couplings and Aza-Michael Reactions

Minami Odagi
,
This research was funded by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research on Innovative Areas ‘Advanced Molecular Transformations by Organocatalysts’ (Grant nos. 23105013 to K.N.) and ‘Middle Molecular Strategy’ (18H04387 to K.N.), and the JSPS, Grants-in-Aid for Scientific Research (B) (17H03052 to K.N.). M.O. is grateful to the JSPS, KAKENHI (Grant Nos. 18K14210 and 20K05488).


Abstract

Alkaloids with fused polycyclic frameworks are attractive targets for synthetic organic chemists because of their structural complexity and biological activities, and a variety of strategies for their synthesis have been developed. Herein, we describe our strategy of utilizing oxidative phenolic coupling and a regioselective intramolecular aza-Michael reaction to generate fused polycyclic structural frameworks, and its application for the total syntheses of (+)-gracilamine and various hasubanan alkaloids.

1 Introduction

2 Total Synthesis of (+)-Gracilamine

3 Synthetic Studies on Monoterpene Indole Alkaloids

4 Total Synthesis of Hasubanan Alkaloids

5 Summary



Publication History

Received: 18 December 2022

Accepted after revision: 04 January 2023

Accepted Manuscript online:
04 January 2023

Article published online:
09 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kitamura T, Fujiwara Y. Org. Prep. Proced. Int. 1997; 29: 409
    • 1b Moriarty RM. J. Org. Chem. 2005; 70: 2893
    • 1c Zhdankin VV. ARKIVOC 2009; (i): 1
    • 1d Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 1e Li X, Chen P, Liu G. Beilstein J. Org. Chem. 2018; 14: 1813
    • 1f Hyatt IF. D, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Org. Biomol. Chem. 2019; 17: 7822
    • 1g Reddy Kandimalla S, Prathima Parvathaneni S, Sabitha G, Subba Reddy BV. Eur. J. Org. Chem. 2019; 1687
    • 2a Pouysegu L, Avellan AV, Quideau S. J. Org. Chem. 2002; 67: 3425
    • 2b Quideau S, Pouysegu L, Ozanne A, Gagnepain J. Molecules 2005; 10: 201
    • 2c Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 2d Pouységu L, Sylla T, Garnier T, Rojas LB, Charris J, Deffieux D, Quideau S. Tetrahedron 2010; 66: 5908
    • 2e Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 2f Maertens G, L’Homme C, Canesi S. Front. Chem. 2014; 2: 115
    • 2g Huck CJ, Boyko YD, Sarlah D. Nat. Prod. Rep. 2022; 38: 2231
    • 3a Tissot M, Phipps RJ, Lucas C, Leon RM, Pace RD, Ngouansavanh T, Gaunt MJ. Angew. Chem. Int. Ed. 2014; 53: 13498
    • 3b Du JY, Zeng C, Han XJ, Qu H, Zhao XH, An XT, Fan CA. J. Am. Chem. Soc. 2015; 137: 4267
  • 4 Zheng C, You S.-L. ACS Cent. Sci. 2021; 7: 432
    • 5a Du K, Guo P, Chen Y, Cao Z, Wang Z, Tang W. Angew. Chem. Int. Ed. 2015; 54: 3033
    • 5b Cao Z, Du K, Liu J, Tang W. Tetrahedron 2016; 72: 1782
    • 5c Du K, Yang H, Guo P, Feng L, Xu G, Zhou Q, Chung LW, Tang W. Chem. Sci. 2017; 8: 6247
    • 5d Mu X, Yu H, Peng H, Xiong W, Wu T, Tang W. Angew. Chem. Int. Ed. 2020; 59: 8143
    • 6a Shi Y, Wang Q, Gao S. Org. Chem. Front. 2018; 5: 1049
    • 6b Sanchez-Rosello M, Escolano M, Gavina D, Del Pozo C. Chem. Rec. 2022; 22: e202100161
  • 7 Odagi M, Yamamoto Y, Nagasawa K. Angew. Chem. Int. Ed. 2018; 57: 2229
  • 8 Ünver N, Kaya GI. Turk. J. Chem. 2005; 29: 547
  • 9 Shi Y, He H, Gao S. Chem. Commun. 2018; 54: 12905
    • 10a Tian S, Zi W, Ma D. Angew. Chem. Int. Ed. 2012; 51: 10141
    • 10b Shi Y, Yang B, Cai S, Gao S. Angew. Chem. Int. Ed. 2014; 53: 9539
    • 10c Gonzalez-Esguevillas M, Pascual-Escudero A, Adrio J, Carretero JC. Chem. Eur. J. 2015; 21: 4561
    • 10d Bose S, Yang J, Yu ZX. J. Org. Chem. 2016; 81: 6757
    • 10e Gan P, Smith MW, Braffman NR, Snyder SA. Angew. Chem. Int. Ed. 2016; 55: 3625
    • 10f Chandra A, Verma P, Negel A, Pandey G. Eur. J. Org. Chem. 2017; 6788
    • 10g Gao NY, Banwell MG, Willis AC. Org. Lett. 2017; 19: 162
    • 10h Zuo XD, Guo SM, Yang R, Xie JH, Zhou QL. Org. Lett. 2017; 19: 5240
    • 11a Kato M, Hirao S, Nakano K, Sato M, Yamanaka M, Sohtome Y, Nagasawa K. Chem. Eur. J. 2015; 21: 18606
    • 11b Nakano K, Orihara T, Kawaguchi M, Hosoya K, Hirao S, Tsutsumi R, Yamanaka M, Odagi M, Nagasawa K. Tetrahedron 2021; 92: 132281
  • 12 Dohi T, Yamaoka N, Kita Y. Tetrahedron 2010; 66: 5775
    • 13a Mitaine AC, Mesbah K, Richard B, Petermann C, Arrazola S, Moretti C, Zeches-Hanrot M, Men-Olivier LL. Planta Med. 1996; 62: 458
    • 13b O’Connor SE, Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 13c Gaich T, Eckermann R. Synthesis 2013; 45: 2813
    • 13d Smith JM, Moreno J, Boal BW, Garg NK. Angew. Chem. Int. Ed. 2015; 54: 400
    • 13e Odagi M, Nagasawa K, Hosoya K, Iida K. Heterocycles 2021; 103: 110
  • 14 Hosoya K, Iida K, Odagi M, Nagasawa K. J. Org. Chem. 2020; 85; 11980
    • 15a Matsui M. The Alkaloids: Chemistry and Pharmacology, Vol. 33. Brossi A. Academic Press; New York: 1988: 307
    • 15b Semwal DK, Badoni R, Semwal R, Kothiyal SK, Singh GJ. P, Rawat U. J. Ethnopharmacol. 2010; 132: 369
    • 15c King SM, Herzon SB. The Alkaloids: Chemistry and Biology, Vol. 73. Knölker H.-J. Academic Press; Burlington: 2014: 161
  • 16 He L, Zhang YH, Guan HY, Zhang JX, Sun QY, Hao XJ. J. Nat. Prod. 2011; 74: 181
    • 17a Schultz AG, Wang A. J. Am. Chem. Soc. 1998; 120: 8259
    • 17b Li F, Takakoff SS, Castle SL. J. Am. Chem. Soc. 2009; 131: 6674
    • 17c Chuang KV, Navarro R, Reisman SE. Angew. Chem. Int. Ed. 2011; 50: 9447
    • 17d Herzon SB, Calandra NA, King SM. Angew. Chem. Int. Ed. 2011; 50: 8863
    • 17e Magnus P, Seipp C. Org. Lett. 2013; 15: 4870
    • 17f Calandra NA, King SM, Herzon SB. J. Org. Chem. 2013; 78: 10031
    • 17g King SM, Calandra NA, Herzon S. Angew. Chem. Int. Ed. 2013; 52: 3642
    • 17h Volpin G, Veprek NA, Bellan AB, Trauner D. Angew. Chem. Int. Ed. 2017; 56: 897
    • 17i Hartrampf N, Winter N, Pupo G, Stoltz BM, Trauner D. J. Am. Chem. Soc. 2018; 140: 8675
    • 17j Tan S, Li F, Park S, Kim S. Org. Lett. 2019; 21: 292
    • 17k Li G, Wang Q, Zhu J. Nat. Commun. 2021; 12: 36
    • 17l Grunenfelder DC, Navarro R, Wang H, Fastuca NJ, Butler JR, Reisman SE. Angew. Chem. Int. Ed. 2022; 61: e202117480
  • 18 Odagi M, Matoba T, Hosoya K, Nagasawa K. J. Am. Chem. Soc. 2021; 143: 2699
  • 19 Odagi M, Matoba T, Nagasawa K. J. Org. Chem. 2022; 87: 1065
    • 20a Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986
    • 20b Helal CJ, Meyer MP. Lewis Base Catalysis in Organic Synthesis, Chap. 11. Vedejs E, Denmark SE. Wiley; 2016
  • 21 Joannesse C, Johnston CP, Concellon C, Simal C, Philp D, Smith AD. Angew. Chem. Int. Ed. 2009; 48: 8914
  • 22 Ohmori K, Ushimaru N, Suzuki K. Proc. Natl. Acad. Soc. U. S. A. 2004; 101: 12002
  • 23 Tomita T, Ibuka T, Inubuahi Y, Takeda K. Tetrahedron Lett. 1964; 48: 3605
  • 24 Taga T, Akimoto N, Ibuka T. Chem. Pharm. Bull. 1984; 32: 4223
  • 25 Hui C, Craggs L, Antonchick AP. Chem. Soc. Rev. 2022; 51: 8652