Zeitschrift für Orthomolekulare Medizin 2023; 21(01): 16-24
DOI: 10.1055/a-2014-4012
Wissen

Autoimmunerkrankungen und Vitamin D

Uwe Gröber
,
Michael F. Holick

Zusammenfassung

Die biologisch aktive Form von Vitamin D, das Secosteroidhormon 1,25(OH)2D, moduliert zahlreiche Gene des angeborenen und adaptiven Immunsystems über Regulation seines Transkriptionsfaktors Vitamin-D-Rezeptor (VDR). Der Beitrag stellt den Einfluss des Prohormons auf das Epigenom vor und den aktuellen Stellenwert in der Therapie von Autoimmunerkrankungen, z. B. Multiple Sklerose, sowie bei einer Vitamin-D-Resistenz.



Publication History

Article published online:
24 March 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Carlberg C.. Nutrigenomics of Vitamin D. Nutrients 2019; 11: 676
  • 2 Seuter S, Neme A, Carlberg C.. Epigenome-wide effects of vitamin D and their impact on the transcriptome of human monocytes involve CTCF. Nucleic Acids Res 2016; 44: 4090-4104
  • 3 Bikle DD.. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem Biol 2014; 21: 319-329
  • 4 Arnson Y, Amital H. , Shoenfeld. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis 2007; 66: 1137-1142
  • 5 Murdaca G, Tonacci A, Negrini S. et al. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmun Rev 2019; 18: 102350
  • 6 Gröber U, Holick MF.. Vitamin D: Die Heilkraft des Sonnenvitamins. 4., aktual. und erw. Aufl.. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2020
  • 7 Gröber U, Spitz J, Reichrath J. et al. Vitamin D: Update 2013. From rickets prophylaxis to general preventive healthcare. Dermatoendocrinol 2013; 5: 331-347
  • 8 Matsuoka LY, Wortsman, Haddad JG. et al. In vivo threshold for cutaneous synthesis of vitamin D3. J Lab Clin Med 1989; 114: 301-305
  • 9 Jones G, Prosser DE, Kaufmann M.. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 2014; 55: 13-31
  • 10 Cashman KD, van den Heuvel EG, Schoemaker RJ. et al. 25-Hydroxyvitamin D as a Biomarker of Vitamin D Status and its Modeling to Inform Strategies for Prevention of Vitamin D Deficiency within the Population. Adv Nutr 2017; 8: 947-957
  • 11 Fatima M, Lamis A, Siddiqui S. et al. Therapeutic Role of Vitamin D in Multiple Sclerosis: An Essentially Contested Concept. Cureus 2022; 14: e26186
  • 12 Finamor DC, Siningaglia-Coimbra R, Neves LCM. et al. A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. Dermatoendocrinol 2013; 5: 222-234
  • 13 Saksa N, Neme A, Ryynänen J. et al. Dissecting high from low responders in a vitamin D3 intervention study. J Steroid Biochem Mol Biol 2015; 148: 275-282
  • 14 Seuter S, Virtanen JK, Nurmi T. et al. Molecular evaluation of vitamin D responsiveness of healthy young adults. J Steroid Biochem Mol Biol 2017; 174: 314-321
  • 15 Carlberg C, Haq A.. The concept of the personal vitamin D response index. J Steroid Biochem Mol Biol 2018; 175: 12-17
  • 16 Lu M, McComish BJ, Burdon KP. et al. The Association Between Vitamin D and Multiple Sclerosis Risk: 1,25(OH)2D3 Induces Super-Enhancers Bound by VDR. Front Immunol 2019; 10: 488
  • 17 Huertas J, Schöler HR, Cojocaru V.. Histone tails cooperate to control the breathing of genomic nucleosomes. PLoS Comp Biol 2021; 17: e1009013
  • 18 Fetahu IS, Höbaus J, Kallay E.. Vitamin D and the epigenome. Front Physiol 2014; 5: 164
  • 19 Papin C, Le Gras S, Ibrahim A. et al. CpG Islands Shape the Epigenome Landscape. J Mol Biol 2021; 433: 166659
  • 20 Carlberg C, Seuter S, Numi T. et al. In vivo response of the human epigenome to vitamin D: A Proof-of-principle study. J Steroid Biochem Mol Biol 2018; 180: 142-148
  • 21 Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One 2013; 8: e58725
  • 22 Kurtzke JF.. Geography in multiple sclerosis. J Neurol 1977; 215: 1-26
  • 23 Ascherio A, Munger KL.. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 2007; 61: 288-299
  • 24 Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann Neurol 2007; 61: 504-513
  • 25 Antico A, Tampoia M, Tozzoli R. et al. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev 2012; 12: 127-136
  • 26 Eftekharian MM, Noroozi R, Sayad A. et al. RAR-related orphan receptor A (RORA): A new susceptibility gene for multiple sclerosis. J Neurol Sci 2016; 369: 259-262
  • 27 Slominski AT, Kim TK, Takeda Y. et al. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J 2014; 28: 2775-2789
  • 28 Slominski AT, Kim TK, Hobrath JV. et al. Endogenously produced nonclassical vitamin D hydroxy-metabolites act as "biased" agonists on VDR and inverse agonists on RORα and RORγ. J Steroid Biochem Mol Biol 2017; 173: 42-56
  • 29 Ascherio A, Munger KL, White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 2014; 71: 306-314
  • 30 Hahn J, Cook NR, Alexander EK. et al. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022; 376: e066452
  • 31 Sirbe C, Rednic S, Grama A. et al. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int J Mol Sci 2022; 23: 9784
  • 32 Shinto L, Marracci G, Baldauf-Wagner S. et al. Omega-3-fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot Essent Fatty Acids 2009; 80: 131-136
  • 33 Ramirez-Ramirez V, Macias-Isalas MA, Ortiz GG. et al. Efficacy of fish oil on serum of TNF α , IL-1 β , and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev 2013; 2013: 709493 DOI: 10.1155/2013/709493.
  • 34 Yu H, Bai S, Hao Y. et al. Fatty acids role in multiple sclerosis as “metabokines”.. J Neuroinflammation 2022; 19: 157
  • 35 Jagannath VA, Filippini G, Pietrantonj CD. et al. Vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev 2018; 9: CD008422
  • 36 Hupperts R, Smolders J, Vieth R. et al. Randomized trial of daily high-dose vitamin D3 in patients with RRMS receiving subcutaneous interferon β-1a. Neurology 2019; 93: e1906-e1916
  • 37 Camu W, Lehert P, Pierrot-Deseilligny C. et al. Cholecalciferol in relapsing-remitting MS: A randomized clinical trial (CHOLINE). Neurol Neuroimmunol Neuroinflamm 2019; 6: e597
  • 38 Smolders J, Torkildsen O, Camu W. et al. An Update on Vitamin D and Disease Activity in Multiple Sclerosis. CNS Drugs 2019; 33: 1187-1199
  • 39 Fitzgerald KC, Munger KL, Köchert K. et al. Association of vitamin D levels with multiple sclerosis activity and progression in patients receiving interferon beta-1b. JAMA Neurol 2015; 72: 1458-1465
  • 40 Lemke D, Klement RJ, Schweiger F. et al. Vitamin D Resistance as a Possible Cause of Autoimmune Diseases: A Hypothesis Confirmed by a Therapeutic High-Dose Vitamin D Protocol. Front Immunol 2021; 12: 655739
  • 41 Hanel A, Carlberg C.. Time-Resolved Gene Expression Analysis Monitors the Regulation of Inflammatory Mediators and Attenuation of Adaptive Immune Response by Vitamin D. Int J Mol Sci 2022; 23: 911
  • 42 Seuter S, Virtanen JK, Nurmi T. et al. Molecular evaluation of vitamin D responsiveness of healthy young adults. J Steroid Biochem Mol Biol 2017; 174: 314-321
  • 43 Holick MF, Binkley NC, Bischoff-Ferrari HA. et al. Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1911-1930
  • 44 Holick MF.. Vitamin D is not as toxic as was once thought: a historical and up-to-date perspective. Mayo Clin Proc 2015; 90: 561-564
  • 45 Sotirchos ES, Bhargava P, Eckstein C. et al. Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Neurology 2016; 86: 382-390
  • 46 Marcinowska-Suchowierska E, Kupisz-Urbanska M, Lukaszkiewicz J. et al. Vitamin D Toxicity–A Clinical Perspective. Front Endocrinol (Lausanne) 2018; 9: 550
  • 47 Amon U, Yaguboglu R, Ennis M, Holick MF, Amon J.. Safety Data in Patients with Autoimmune Diseases during Treatment with High Doses of Vitamin D3 According to the “Coimbra Protocol”. Nutrients 2022; 14: 1575
  • 48 Koivisto O, Hanel A, Carlberg C.. Key Vitamin D Target Genes with Functions in the Immune System. Nutrients 2020; 12: 1140