Erfahrungsheilkunde 2024; 73(02): 91-101
DOI: 10.1055/a-2264-3381
Praxis

Die Rolle der Mitochondrien im Immunmetabolismus

Kurt Mosetter
Vesalius GmbH, Myoreflextherapie-Ausbildung, URL: http://www.myoreflex.de/uebersichtsseite-ausbildung/grundkurse   Email: ausbildung@akademie.mosetter.de   ZiT, Zentrum für interdisziplinäre Therapien, URL: http://www.myoreflex.de/uebersichtsseite-praxen/zit-konstanz   Email: info@mosetter.de
› Author Affiliations

Zusammenfassung

In den Traditionen der ayurvedischen und chinesischen Medizin werden Erkrankungen mit Schwächezuständen, Müdigkeit, Depression, Neurodegeneration und Immundysregulation über „stärkende Naturstoffe“, aufbauende Maßnahmen für die Darmgesundheit, die „Lebergesundheit“ und einen guten Stoffwechsel behandelt. Nicht die Bekämpfung der Erkrankungen, sondern die Stärkung des natürlichen Energiestoffwechsels sowie der Reparatur stehen dabei im Vordergrund. Eine antientzündliche Ernährung mit verkochtem Gemüse, Linsen, Kichererbsen, Blumenkohl, Brokkoli und der Verzicht auf Toxine, Konservierungs- und Geschmacksverstärker, Zucker, Fruchtzucker, Getreide und Kuhmilchprodukte wird flankiert mit der Gabe von Myrobalan, Heidelbeeren, Goji-Beeren, Curcumin, Ingwer, Ginseng, Arabinogalactanen, Grüntee-Extrakten, Boswellia, Curcumin, Granatapfel, Cordyceps, Reishi, Artemisia usw. Ein gesunder Darm soll über den Stoffwechsel und die Leber den Energiehaushalt aufbauen. Könnte die Unterstützung der mitochondrialen Funktionen eine entscheidende Schnittstelle zwischen einer mehr als 3000 Jahre alten Erfahrungsmedizin und der modernen „Mitochondrien-Medizin“ darstellen?

Abstract

In the traditions of Ayurvedic and Chinese medicine, illnesses with states of weakness, fatigue, depression, neurodegeneration, and immune dysregulation are treated with „strengthening natural substances“, restorative measures for intestinal health, „liver health“, and a good metabolism. The focus is not on fighting the diseases, but on strengthening the natural energy metabolism as well as the repair process. An anti-inflammatory diet with overcooked vegetables, lentils, chickpeas, cauliflower, broccoli and the avoidance of toxins, preservatives and flavor enhancers, sugar, fructose, cereals, and cow‘s milk products is accompanied by the administration of myrobalan, blueberries, goji berries, curcumin, ginger, ginseng, arabinogalactans, green tea extracts, boswellia, curcumin, pomegranate, cordyceps, reishi, artemisia, etc. A healthy intestine is supposed to build up the energy balance via the metabolism and the liver. Could the support of mitochondrial functions represent a crucial interface between more than 3000 years of empirical medicine and modern „mitochondrial medicine“?



Publication History

Article published online:
09 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Xie JH, Li YY, Jin J. The essential functions of mitochondrial dynamics in immune cells. Cell Molecul Immunol 2020; 17 (7) 712-721
  • 2 Wang B, Huang M, Shang D. et al. Mitochondrial behavior in axon degeneration and regeneration. Front Aging Neurosci 2021; 13: 650038
  • 3 Barshad G, Marom S, Cohen T. et al. Mitochondrial DNA transcription and its regulation: An evolutionary perspective. Trends Genet 2018; 34 (9) 682-692
  • 4 Adlimoghaddam A, Albensi BC. The nuclear factor kappa B (NF-κB) signaling pathway is involved in ammonia-induced mitochondrial dysfunction. Mitochondrion 2021; 57: 63-75
  • 5 Vidali S, Aminzadeh S, Lambert B. et al. Mitochondria: The ketogenic diet – A metabolism-based therapy. Int J Biochem Cell Biol 2015; 63: 55-59
  • 6 Naviaux RK. Metabolic features and regulation of the healing cycle – A new model for chronic disease pathogenesis and treatment. Mitochondrion 2019; 46: 278-297
  • 7 Rodríguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress 2019; 3 (6) 195-207
  • 8 Picard M. Energy transduction and the mind-mitochondria connection. Biochemist 2022; 44 (4) 14-18
  • 9 Georgescauld F, Popova K, Gupta AJ. et al. GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 2014; 157 (4) 922-934
  • 10 Morén C, de Souza RM, Giraldo DM. et al. Antioxidant therapeutic strategies in neurodegenerative diseases. Int J Molecul Sci 2022; 23 (16) 9328
  • 11 Yi L, Maier AB, Tao R. et al. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: A randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. Gero Sci 2023; 45 (1) 29-43
  • 12 Parikh S, Saneto R, Falk MJ. et al. A modern approach to the treatment of mitochondrial disease. Curr Treatm Opt Neurol 2009; 11 (6) 414-430
  • 13 Palmeira CM, Teodoro JS, Amorim JA. et al. Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Rad Biol Med 2019; 141: 483-491
  • 14 Branco AF, Ferreira A, Simões RF. et al. Ketogenic diets: From cancer to mitochondrial diseases and beyond. Eur J Clin Invest 2016; 46 (3) 285-298
  • 15 Zhu H, Bi D, Zhang Y. et al. Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Sign Transduct Targ Ther 2022; 7 (1) 11
  • 16 Yuan Z, Liu S, Song W. et al. Galactose enhances chondrogenic differentiation of ATDC5 and cartilage matrix formation by chondrocytes. Front Molecul Biosci 2022; 9: 850778
  • 17 Zachariou V, Bauer CE, Seago ER. et al. Healthy dietary intake moderates the effects of age on brain iron concentration and working memory performance. Neurobiol Aging 2021; 106: 183-196
  • 18 Lepretti M, Martucciello S, Burgos Aceves MA. et al. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients 2018; 10 (3) 350
  • 19 Tessema B, Haag J, Sack U. et al. The determination of mitochondrial mass is a prerequisite for accurate assessment of peripheral blood mononuclear cells‘ oxidative metabolism. Int J Molecul Sci 2023; 24 (19) 14824
  • 20 Naviaux RK. Metabolic features and regulation of the healing cycle – A new model for chronic disease pathogenesis and treatment. Mitochondrion 2019; 46: 278-297
  • 21 Li Z, Lu S, Li X. The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury. Cell Molecul Life Sci 2021; 78 (15) 5731-5741
  • 22 Tyszka M, Maciejewska-Markiewicz D, Biliński J. et al. Increased intestinal permeability and stool zonulin, calprotectin and beta-defensin-2 concentrations in allogenic hematopoietic cell transplantation recipients. Int J Molecul Sci 2022; 23 (24) 15962
  • 23 Tanaka M, Szabó Á, Spekker E. et al. Mitochondrial impairment: A common motif in neuropsychiatric presentation The link to the tryptophan-kynurenine metabolic system?. Cells 2022; 11 (16) 2607
  • 24 Savin VJ, McCarthy ET, Sharma R. et al. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Translat Res 2008; 151 (6) 288-292
  • 25 Wong SY, Gadomski T, van Scherpenzeel M. et al. Oral D-galactose supplementation in PGM1-CDG. Genet Med 2017; 19 (11) 1226-1235
  • 26 Witters P, Tahata S, Barone R. et al. Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG. Genet Med 2020; 22 (6) 1102-1107
  • 27 Kreider RB, Kalman DS, Antonio J. et al. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 2017; 14: 18
  • 28 Zheng J, Ni C, Zhang Y. et al. Association of regular glucosamine use with incident dementia: Evidence from a longitudinal cohort and Mendelian randomization study. BMC Med 2023; 21 (1) 114
  • 29 Sharma H, Keith Wallace R. Ayurveda and epigenetics. Medicina (Lithuania) 2020; 56 (12) 687
  • 30 Hassan Bulbul MR, Uddin Chowdhury MN, Naima TA. et al. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon 2022; 8 (8) e10220
  • 31 Ahmed S, Ding X, Sharma A. Exploring scientific validation of Triphala Rasayana in Ayurveda as a source of rejuvenation for contemporary healthcare: An update. J Ethnopharm 2021; 273: 113829
  • 32 Hassan FU, Rehman MS, Khan MS. et al. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front Genet 2019; 10: 514
  • 33 Homolak J, Babic Perhoc A, Virag D. et al. D-galactose might protect against ionizing radiation by stimulating oxidative metabolism and modulating redox homeostasis. J Radiat Res 2023; 64 (4) 743-745
  • 34 Ratovitski EA. Anticancer natural compounds as epigenetic modulators of gene expression. Curr Genom 2017; 18 (2) 175-205
  • 35 Pradeepkiran JA, Hindle A, Kshirsagar S. et al. Are mitophagy enhancers therapeutic targets for Alzheimer‘s disease?. Biomed Pharmacother 2022; 149: 112918
  • 36 Royston KJ, Paul B, Nozell S. et al. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Experim Cell Res 2018; 368 (1) 67-74
  • 37 Fairley LH, Lejri I, Grimm A. et al. Spermidine rescues bioenergetic and mitophagy deficits induced by disease-associated tau protein. Int J Molecul Sci 2023; 24 (6) 5297
  • 38 Erbeldinger R, Welsch G, Ellermann A. et al. Phytopharmaka – Eine kompakte Orientierung. First line treatment – A natural way. Sportärzt Z Sportmed Ern 2023; 1: 82-83
  • 39 Liu XL, Wang YD, Yu XM. et al. Mitochondria-mediated damage to dopaminergic neurons in Parkinson’s disease (Review). Int J Molecul Med 2018; 41 (2) 615-623
  • 40 Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 2016; 139 (1) 216-231
  • 41 Borsche M, Pereira SL, Klein C. et al. Mitochondria and Parkinson’s disease: Clinical, molecular, and translational aspects. J Parkinson Dis 2021; 11 (1) 45-60
  • 42 Legati A, Ghezzi D. Parkinson’s disease, parkinsonisms, and mitochondria: The role of nuclear and mitochondrial DNA. Curr Neurol Neurosci Rep 2023; 23 (4) 131-147
  • 43 Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease. Progr Neurobiol 2019; 177: 73-93
  • 44 Monzio Compagnoni G, Di Fonzo A, Corti S. et al. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Molecul Neurobiol 2020; 57 (7) 2959-2980
  • 45 Abrishamdar M, Jalali MS, Farbood Y. Targeting mitochondria as a therapeutic approach for Parkinson’s disease. Cell Molecul Neurobiol 2023; 43 (4) 1499-1518
  • 46 Quntanilla RA, Tapia-Monsalves C. The role of mitochondrial impairment in Alzheimer’s disease neurodegeneration: The tau connection. Curr Neuropharm 2020; 18 (11) 1076-1091
  • 47 Patergnani S, Fossati V, Bonora M. et al. Mitochondria in multiple sclerosis: Molecular mechanisms of pathogenesis. Int Rev Cell Molecul Biol 2017; 328: 49-103
  • 48 Fetisova E, Chernyak B, Korshunova G. et al. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr Med Chem 2017; 24 (19) 2086-2114
  • 49 Varhaug KN, Vedeler CA, Tzoulis C. et al. Multippel sklerose – En mitokondriemediert sykdom? [Multiple sclerosis – A mitochondria-mediated disease?]. Tidsskrift Norske Laege 2017; 137 (4) 284-287
  • 50 Bargiela D, Chinnery PF. Mitochondria in neuroinflammation – Multiple sclerosis (MS), Leber hereditary optic neuropathy (LHON) and LHON-MS. Neurosci Lett 2019; 710: 132932
  • 51 Heidker RM, Emerson MR, LeVine SM. Metabolic pathways as possible therapeutic targets for progressive multiple sclerosis. Neural Regen Res 2017; 12 (8) 1262-1267
  • 52 Liu Y, Zhu X. Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases. Transl Neurodegen 2017; 6: 21
  • 53 Campbell GR, Worrall JT, Mahad DJ. The central role of mitochondria in axonal degeneration in multiple sclerosis. Multiple Scl (England) 2014; 20 (14) 1806-1813
  • 54 Kozin MS, Kulakova OG, Favorova OO. Involvement of mitochondria in neurodegeneration in multiple sclerosis. Biochemistry 2018; 83 (7) 813-830
  • 55 Rossmann MP, Dubois SM, Agarwal S. et al. Mitochondrial function in development and disease. Dis Models Mech 2021; 14 (6) dmm048912
  • 56 He L, Maheshwari A. Mitochondria in early life. Curr Ped Rev 2023; 19 (4) 395-416
  • 57 Lepretti M, Martucciello S, Burgos Aceves MA. et al. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients 2018; 10 (3) 350
  • 58 Maksoud R, Balinas C, Holden S. et al. A systematic review of nutraceutical interventions for mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome. J Translat Med 2023; 19 (1) 81
  • 59 Jelinek G. Taking control of multiple sclerosis: Natural and medical therapies to prevent its progression. Lancaster: Fleetfoot Books; 2005
  • 60 Jelinek G. Overcoming multiple sclerosis: An evidence-based guide to recovery. Allen & Unwin; 2010
  • 61 Jelinek G. Recovering from multiple sclerosis: Real life stories of hope and inspiration. Allen & Unwin; 2013
  • 62 Patani R, Balaratnam M, Vora A. et al. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 2007; 33 (3) 277-287
  • 63 Kerschensteiner M, Bareyre FM, Buddeberg BS. et al. Remodeling of axonal connections contributes to recovery in an animal model of multiple sclerosis. J Exp Med 2004; 200 (8) 1027-1038