Subscribe to RSS
DOI: 10.1055/a-2649-7635
Asymmetric Construction of the C(sp3)–SCF3 Motif by CuH-Catalyzed Hydrofunctionalizations of 1-SCF3-Alkenes
This work was supported by JSPS KAKENHI Grant No. JP 24KJ1578 (Grant-in-Aid for JSPS Research Fellow to Y.K.) and JP 23K23345 (Grant-in-Aid for Scientific Research(B) to K.H.) as well as by JST FOREST Program (Grant Number JPMJFR211X to K.H.). K.H. also acknowledges Hoansha Foundation for financial support.
Supported by: Hoansha Foundation
Supported by: JSPS 23K23345, 24KJ1578

Abstract
Trifluoromethylthio (SCF3)-containing molecules are highly valuable in medicinal chemistry and agrochemistry, and efficient synthetic methods for their preparation have thus been developed. However, the asymmetric construction of the C(sp3)–SCF3 motif still remains largely underdeveloped. Herein, we summarize our recent work on the CuH-catalyzed hydrofunctionalizations of 1-SCF3-alkenes, which enable the asymmetric synthesis of nontrivial C(sp3)–SCF3 compounds that are difficult to prepare by other means.
Keywords
Asymmetric catalysis - Copper - Hydrofunctionalization - Organofluorine molecules - Trifluoromethylthio groupPublication History
Received: 11 April 2025
Accepted after revision: 04 July 2025
Accepted Manuscript online:
04 July 2025
Article published online:
30 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev 2008; 37: 320
- 1b Fujiwara T, O’Hagan D. J Fluorine Chem 2014; 167: 16
- 1c Wang J, Sánchez-Roselló M, Aceña JL. et al. Chem Rev 2014; 114: 2432
- 1d Zhou Y, Wang J, Gu Z. et al. Chem Rev 2016; 116: 422
- 1e Meanwell NA. J Med Chem 2018; 61: 5822
- 1f Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
- 1g Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. iScience 2020; 23: 101467
- 2a Müller K, Faeh C, Diederich F. Science 1881; 2007: 317
- 2b O’hagan D. Chem Soc Rev 2008; 37: 308
- 2c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J Med Chem 2015; 58: 8315
- 2d Johnson BM, Shu Y-Z, Zhuo X, Meanwell NA. J Med Chem 2020; 63: 6315
- 3 Hansch C, Leo A, Taft RW. Chem Rev 1991; 91: 165
- 4 Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ. J Med Chem 1973; 16: 1207
- 5 Wishart DS, Feunang YD, Guo AC. et al. Nucleic Acids Res 2018; 46: D1074
- 6a Xu X-H, Matsuzaki K, Shibata N. Chem Rev 2015; 115: 731
- 6b Barasta-Vallejo S, Bonesi S, Postigo A. Org Biomol Chem 2016; 14: 7150
- 6c Barthelemy A-L, Magnier E, Dagousset G. Synthesis 2018; 50: 4765
- 6d Ghiazza C, Billard T, Tlili A. Chem Eur J 2019; 25: 6482
- 7a Hardy MA, Chachignon H, Cahard D. Asian J Org Chem 2019; 8: 591
- 7b Wang Q, Nilsson T, Eriksson L, Szabó KJ. Angew Chem Int Ed 2022; 61: e202210509
- 7c Zhang W, Tian Y, Liu X-D. et al. Angew Chem Int Ed 2024; 63: e202319850
- 7d Hu D-D, Nie T-M, Xiao X. et al. Angew Chem Int Ed 2024; 63: e202400308
- 8a Kojima Y, Nishii Y, Hirano K. Angew Chem Int Ed 2024; 63: e20240337
- 8b Kojima Y, Suda S, Kanna W, Nishii Y, Maeda S, Hirano K. Chem Eur J. 2025 31. e202501210
- 9a Mahoney WS, Brestensky DM, Stryker JM. J Am Chem Soc 1988; 110: 291
- 9b Ito H, Ishizuka T, Arimoto K, Miura K, Hosomi A. Tetrahedron Lett 1997; 38: 8887
- 9c Romero EA, Olsen PM, Jazzar R, Soleilhavoup M, Gembicky M, Bertrand G. Angew Chem Int Ed 2017; 56: 4024
- 9d Jang WJ, Song SM, Moon JH, Lee JY, Yun J. J Am Chem Soc 2017; 139: 13660
- 9e Speelman AL, Tran BL, Erickson JD, Vasiliu M, Dixon DA, Bullock RM. Chem Sci 2021; 12: 11495
- 9f Carroll TG, Ryan DE, Erickson JD, Bullock RM, Tran BL. J Am Chem Soc 2022; 144: 13865
- 9g Kutateladze DA, Mai BK, Dong Y, Zhang Y, Liu P, Buchwald SL. J Am Chem Soc 2023; 145: 17557
- 10a Fichez J, Dupommier D, Besset T. Synthesis 2022; 54: 3761
- 10b Zhang C-P, Vicic DA. Chem Asian J 2012; 7: 1756
- 10c Glenadel Q, Alazet S, Tlili A, Billard T. Chem Eur J 2015; 21: 14694
- 10d Arimori S, Takada M, Shibata N. Dalton Trans 2015; 44: 19456
- 10e Zhang P, Li M, Xue X-S. et al. J Org Chem 2016; 81: 7486
- 10f King ER, Tarrago M, Ghosh A. Catal Sci Technol 2023; 13: 7059
- 11a Rueping M, Tolstoluzhsky N, Nikolaienko P. Chem Eur J 2013; 19: 14043
- 11b Huang Y, Ding J, Wu C, Zheng H, Weng Z. J Org Chem 2015; 80: 2912
- 12a Yagupolskii LM, Kondratenko NV, Sambur VP. Synthesis 1975; 721
- 12b Yang Y, Xu L, Yu S, Liu X, Zhang Y, Vicic DA. Chem Eur J 2016; 22: 858
- 13 Huang Y, Zhang M, Lin Q, Weng Z. Synlett 2021; 32: 109
- 14a Pan S, Huang Y, Qing F-L. Chem Asian J 2016; 11: 2854
- 14b Cheng Z-F, Tao T-T, Feng Y-S. et al. J Org Chem 2018; 83: 499
- 14c Zheng C, Huang S, Liu Y. et al. Org Lett 2020; 22: 4868
- 14d Zheng C, Ma M, Huang S. et al. Tetrahedron Lett 2022; 103: 153982
- 14e Kojima Y, Hirano K. Chem Lett 2023; 52: 791
- 15a Noguchi H, Hojo K, Suginome M. J Am Chem Soc 2007; 129: 758
- 15b Wood JL, Marciasini LD, Vaultier M, Pucheault M. Synlett 2014; 25: 551
- 16 Xi Y, Hartwig JF. J Am Chem Soc 2017; 139: 12758
- 17a Logan KM, Smith KB, Brown MK. Angew Chem Int Ed 2015; 54: 5228
- 17b Semba K, Akiyama K, Zheng H, Kameyama R, Sakaki S, Nakao Y. Angew Chem Int Ed 2016; 55: 6275
- 17c Schuppe AW, Knippel JL, Borrajo-Calleja GM, Buchwald SL. J Am Chem Soc 2021; 143: 5330
- 18a Ohmiya H, Yokoi U, Makida Y, Sawamura M. J Am Chem Soc 2010; 132: 2895
- 18b Nagao K, Yokobori U, Makida Y, Ohmiya H, Masaya S. J Am Chem Soc 2012; 134: 8982
- 19a Bäckvall J-E, Sellén M, Grant B. J Am Chem Soc 1990; 112: 6615
- 19b Bäckvall J-E, Persson ESM, Bombrun A. J Org Chem 1994; 59: 4126
- 19c Yoshikai N, Zhang S-L, Nakamura E. J Am Chem Soc 2008; 130: 12862
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For a review, see:
For recent examples:
For pioneering studies on CuH species, see:
For recent examples, see:
For a review, see:
Selected examples:
For a review on (bpy)CuSCF3 reagent, see:
We consider that epimerization of the α-SCF3 alkyl copper intermediate proceeds via stereoinvertive transmetalation with another copper complex. Related reactions via stereoinvertive Cu/Pd transmetalation: