Subscribe to RSS
DOI: 10.1055/a-2661-4897
Expanding Horizons: Visual Outcomes with a 7.7 mm Optical Zone in KLEx Surgery
Visuelle Ergebnisse einer KLEx mit einer optischen Zone von 7,7 mmAuthors
Abstract
Purpose To evaluate the visual and corneal outcomes of Keratorefractive Lenticule Extraction (KLEx) using a large lenticule diameter with a 7.7 mm optical zone and 7.9 mm cap diameter. The study aimed to determine the feasibility, refractive precision, and potential benefits of larger optical zones in improving visual quality and reducing myopic regression, particularly in patients with larger scotopic pupils.
Methods This retrospective case series included 40 eyes from 20 patients who underwent KLEx surgery with the VisuMax800 femtosecond laser. The programmed lenticule diameter was 7.7 mm, and the cap diameter was 7.9 mm, with a cap thickness of 140 µm and a 2.5 mm incision. Preoperative spherical equivalents ranged from − 1.5 D to − 4.75 D. Postoperative evaluations were conducted at 3 months, and assessed refractive outcomes, uncorrected visual acuity (UCVA), and residual astigmatism. Surgical planning was based on a personalized nomogram with refractive adjustments for low astigmatic values.
Results At 3 months, 100% of eyes achieved a UCVA of 20/20, and 25% reached 20/16 or better. The mean postoperative spherical equivalent was + 0.14 ± 0.27 D. Refractive predictability was high, with 97.5% of eyes within ± 0.5 D of intended spherical correction and 90% within ± 0.5 D of cylindrical correction. Residual astigmatism was ≤ 0.50 D in 87% of cases. No adverse events were reported.
Conclusions KLEx using large lenticules is safe, effective, and highly accurate. Larger optical zones may enhance refractive stability and visual quality in patients with large pupils.
Zusammenfassung
Zielsetzung Ziel dieser Studie war die Beurteilung der visuellen Ergebnisse nach keratorefraktiver Lentikelextraktion (KLEx) unter Verwendung eines großen Lentikeldurchmessers mit einer optischen Zone von 7,7 mm und einem Cap-Durchmesser von 7,9 mm. Untersucht wurden refraktive Ergebnisse sowie potenzielle Vorteile größerer optischer Zonen im Hinblick auf eine verbesserte visuelle Qualität und eine Reduktion myoper Regression, insbesondere bei Patienten mit großen skotopischen Pupillen.
Methodik Diese retrospektive Fallserie umfasste 40 Augen von 20 Patienten, die mittels KLEx mit dem VisuMax800-Femtosekundenlaser behandelt wurden. Der programmierte Lentikeldurchmesser betrug 7,7 mm, der Cap-Durchmesser 7,9 mm bei einer Cap-Dicke von 140 µm und einer Inzision von 2,5 mm. Die präoperativen sphärischen Äquivalente lagen zwischen − 1,5 dpt und − 4,75 dpt. Die postoperative Auswertung erfolgte nach 3 Monaten und umfasste refraktive Ergebnisse, unkorrigierte Sehschärfe (UCVA) und den verbleibenden Astigmatismus. Die chirurgische Planung basierte auf einem personalisierten Nomogramm.
Ergebnisse Nach 3 Monaten erreichten 100% der Augen eine UCVA von 20/20, und 25% erzielten 20/16 oder besser. Das mittlere postoperative sphärische Äquivalent betrug + 0,14 ± 0,27 dpt. Die refraktive Vorhersagbarkeit war hoch: 97,5% der Augen lagen innerhalb von ± 0,5 dpt der angestrebten sphärischen Korrektur und 90% innerhalb von ± 0,5 dpt der zylindrischen Korrektur. In 87% der Fälle lag der Restastigmatismus bei ≤ 0,50 D. Es traten keine Komplikationen auf.
Schlussfolgerungen Die KLEx mit großen Lentikeln ist sicher, effektiv und hochpräzise. Größere optische Zonen könnten zur Verbesserung der refraktiven Stabilität und der visuellen Qualität bei Patienten mit großen Pupillen beitragen.
Already known:
-
Standard optical zones in SMILE range between 6.0 and 7.0 mm.
-
Larger pupils can exceed the effective optical zone, potentially leading to visual disturbances.
-
It remained unclear whether using larger programmed lenticules improve optical quality and reduces regression.
Newly described:
-
KLEx with a 7.7 mm optical zone is feasible and shows excellent refractive outcomes at 3 months.
-
No major adverse effects were observed within the follow-up period.
-
Preliminary results suggest potential benefits in addressing large scotopic pupils, pending longer-term validation.
Publication History
Received: 12 May 2025
Accepted: 20 July 2025
Accepted Manuscript online:
21 July 2025
Article published online:
01 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Gurnani B, Kaur K. Recent Advances in Refractive Surgery: An Overview. Clin Ophthalmol 2024; 18: 2467-2472
- 2 Tomás-Juan J, Murueta-Goyena Larrañaga A, Hanneken L. Corneal Regeneration After Photorefractive Keratectomy: A Review. J Optom 2015; 8: 149-169
- 3 Pallikaris IG, Papatzanaki ME, Stathi EZ. et al. Laser in situ keratomileusis. Lasers Surg Med 1990; 10: 463-468
- 4 Melki SA, Azar DT. LASIK complications: etiology, management, and prevention. Surv Ophthalmol 2001; 46: 95-116
- 5 Reinstein DZ, Archer TJ, Gobbe M. Small incision lenticule extraction (SMILE) history, fundamentals of a new refractive surgery technique and clinical outcomes. Eye Vis (Lond) 2014; 1: 3
- 6 Moshirfar M, Somani SN, Patel BC. Small Incision Lenticule Extraction. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025
- 7 Spiru B, Kling S, Hafezi F. et al. Biomechanical Properties of Human Cornea Tested by Two-Dimensional Extensiometry Ex Vivo in Fellow Eyes: Femtosecond Laser-Assisted LASIK Versus SMILE. J Refract Surg 2018; 34: 419-423
- 8 Li M, Zhao J, Shen Y. et al. Comparison of Dry Eye and Corneal Sensitivity between Small Incision Lenticule Extraction and Femtosecond LASIK for Myopia. PLoS One 2013; 8: e77797
- 9 Denoyer A, Landman E, Trinh L. et al. Dry eye disease after refractive surgery: comparative outcomes of small incision lenticule extraction versus LASIK. Ophthalmology 2015; 122: 669-676
- 10 Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol 2011; 95: 335-339
- 11 Blum M, Täubig K, Gruhn C. et al. Five-year results of Small Incision Lenticule Extraction (ReLEx SMILE). Br J Ophthalmol 2016; 100: 1192-1195
- 12 Liu T, Yu T, Liu L. et al. Corneal Cap Thickness and Its Effect on Visual Acuity and Corneal Biomechanics in Eyes Undergoing Small Incision Lenticule Extraction. J Ophthalmol 2018; 2018: 6040873
- 13 Liu P, Yu D, Zhang B. et al. Influence of optical zone on myopic correction in small incision lenticule extraction: a short-term study. BMC Ophthalmol 2022; 22: 409
- 14 Zhou C, Li Y, Wang Y. et al. Comparison of visual quality after SMILE correction of low-to-moderate myopia in different optical zones. Int Ophthalmol 2023; 43: 3623-3632
- 15 Reinstein DZ, Archer TJ, Gobbe M. Is topography-guided ablation profile centered on the corneal vertex better than wavefront-guided ablation profile centered on the entrance pupil?. J Refract Surg 2012; 28: 139-143
- 16 Seo KY, Lee JB, Kang JJ. et al. Comparison of higher-order aberrations after LASEK with a 6.0 mm ablation zone and a 6.5 mm ablation zone with blend zone. J Cataract Refract Surg 2004; 30: 653-657
- 17 Arba Mosquera S, Verma S, McAlinden C. Centration axis in refractive surgery. Eye Vis (Lond) 2015; 2: 4
- 18 Rios LC, Silva PGD, Canamary Junior AM. et al. Centration in refractive surgery. Arq Bras Oftalmol 2020; 83: 76-81
- 19 Mimouni M, Nemet A, Pokroy R. et al. The effect of astigmatism axis on visual acuity. Eur J Ophthalmol 2017; 27: 308-311
- 20 Wang Q, Stoakes IM, Moshirfar M. et al. Assessment of Pupil Size and Angle Kappa in Refractive Surgery: A Population-Based Epidemiological Study in Predominantly American Caucasians. Cureus 2023; 15: e43998
- 21 Oshika T, Tokunaga T, Samejima T. et al. Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis. Invest Ophthalmol Vis Sci 2006; 47: 1334-1338
- 22 Nepomuceno RL, Boxer Wachler BS, Scruggs R. Functional optical zone after myopic LASIK as a function of ablation diameter. J Cataract Refract Surg 2005; 31: 379-384
- 23 Lee CY, Lian IB, Chen HC. et al. The Efficiency, Predictability, and Safety of First-Generation (Visumax 500) and Second-Generation (Visumax 800) Keratorefractive Lenticule Extraction Surgeries: Real-World Experiences. Life (Basel) 2024; 14: 804
- 24 Maniglia M, Thurman SM, Seitz AR. et al. Effect of Varying Levels of Glare on Contrast Sensitivity Measurements of Young Healthy Individuals Under Photopic and Mesopic Vision. Front Psychol 2018; 9: 899
- 25 Huang Y, Zhan B, Han T. et al. Effective optical zone following small incision lenticule extraction: a review. Graefes Arch Clin Exp Ophthalmol 2024; 262: 1657-1665
- 26 Fu D, Wang L, Zhou X. et al. Functional Optical Zone After Small-Incision Lenticule Extraction as Stratified by Attempted Correction and Optical Zone. Cornea 2018; 37: 1110-1117
- 27 Song YW, Cui MF, Feng Y. et al. Comparative study of functional optical zone: small incision lenticule extraction versus femtosecond laser assisted excimer laser keratomileusis. Int J Ophthalmol 2023; 16: 238-244
- 28 Guillon M, Dumbleton K, Theodoratos P. et al. The Effects of Age, Refractive Status, and Luminance on Pupil Size. Optom Vis Sci 2016; 93: 1093-1100
- 29 Reinstein DZ, Archer TJ, Gobbe M. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg 2012; 28: 195-201
- 30 Ganesh S, Brar S, Relekar KJ. Epithelial Thickness Profile Changes Following Small Incision Refractive Lenticule Extraction (SMILE) for Myopia and Myopic Astigmatism. J Refract Surg 2016; 32: 473-482
- 31 Pokroy R, Mimouni M, Sela T. et al. Myopic laser in situ keratomileusis retreatment: Incidence and associations. J Cataract Refract Surg 2016; 42: 1408-1414
- 32 Zhou J, Gu W, Gao Y. et al. Survival analysis of myopic regression after small incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis for low to moderate myopia. Eye Vis (Lond) 2022; 9: 28
- 33 Chayet AS, Assil KK, Montes M. et al. Regression and its mechanisms after laser in situ keratomileusis in moderate and high myopia. Ophthalmology 1998; 105: 1194-1199
