Subscribe to RSS
DOI: 10.1055/a-2705-9579
Recent Applications of Aminocatalysis in Reactions of α,β-Unsaturated Aldehydes
Authors
Funding Information Financial support received from the Anusandhan National Research Foundation (ANRF), India, (CRG/2022/003854) is gratefully acknowledged. Financial support received from IIT Gandhinagar (fellowship to R.M. and V.D.C.) is gratefully acknowledged.

Abstract
Organocatalysis has gained prominence as a powerful tool in asymmetric synthesis, offering a metal-free and environmentally friendly route to enantioenriched molecules. Chiral secondary amines, particularly those derived from proline, have been especially effective, facilitating diverse carbon–carbon and carbon–heteroatom bond-forming transformations under mild conditions. This type of catalysis typically proceeds through two key mechanisms: enamine catalysis, which temporarily converts carbonyl compounds into nucleophilic enamines, and iminium catalysis, which increases the electrophilicity of α,β-unsaturated carbonyl compounds by forming reactive iminium ions. In particular, iminium catalysis has proven valuable for the enantioselective modification of electron-deficient alkenes, enabling important organic transformations. In this account, we summarize our recent advancements in asymmetric aminocatalysis, including the development of novel catalytic methodologies, innovative catalyst architectures, and their implementation in the enantioselective synthesis of biologically active compounds.
Keywords
Asymmetric catalysis - Organocatalysis - Iminium catalysis - Michael addition - Secondary amine catalysis - Bioactive moleculesPublication History
Received: 31 July 2025
Accepted after revision: 28 August 2025
Accepted Manuscript online:
19 September 2025
Article published online:
24 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a García Mancheño O, Waser M. Eur J Org Chem 2023; 26: e202200950
- 1b Pellissier H. Tetrahedron 2007; 63: 9267
- 1c Wende RC, Schreiner PR. Green Chem 2012: 14 1821;
- 1d Krištofíková D, Modrocká V, Mečiarová M, Šebesta R. ChemSusChem 2020; 13: 2828
- 1e Han B, He X-H, Liu Y-Q, He G, Peng C, Li J-L. Chem Soc Rev 2021; 50: 1522
- 2a Kotsuki H, Sasakura N. In: Comprehensive Enantioselective Organocatalysis. Dalko PI. ed. Wiley; 2013. 1.
- 2b Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA. Acc Chem Res 2012; 45: 248
- 3a Mukherjee S, Yang JW, Hoffmann S, List B. Chem Rev 2007; 107: 5471
- 3b Erkkilä A, Majander I, Pihko PM. Chem Rev 2007; 107: 5416
- 4 Gambhir D, Singh S, Singh RP. Chem Asian J 2023; 18: e202300627
- 5 Pasuparthy SD, Maiti B. ChemistrySelect 2022; 7: e202104261
- 6 Klier L, Tur F, Poulsen PH, Jørgensen KA. Chem Soc Rev 2017; 46: 1080
- 7a Tseliou V, Kqiku L, Berger M. et al. Nature 2024; 634: 848
- 7b Berger M, Ma D, Baumgartner Y, Wong TH-F, Melchiorre P. Nat Catal 2023; 6: 332
- 8a Mukherjee S, Biswas B. ChemistrySelect 2020; 5: 10704
- 8b Yu X, Wang W. Org Biomol Chem 2008; 6: 2037
- 9a Xu G, Poelarends GJ. Angew Chem, Int Ed 2022; 61: e202203613
- 9b Claraz A, Siitonen JH, Pihko PM. In: Lewis Base Catalysis in Organic Synthesis. Vedejs E, Denmark SE. eds. Wiley; 2016: 805
- 11a Ramachary DB, Reddy YV, Banerjee A, Banerjee S. Org Biomol Chem 2011; 9: 7282
- 11b Zheng C, Wang X, Fu W, Lu Y, Tan H, Xu H. J Nat Prod 2018; 81: 2582
- 11c Liao H-X, Zheng C-J, Huang G-L. et al. J Nat Prod 2019; 82: 2211
- 11d Wang J, Duan H, Wang Y. et al. J Nat Prod 2017; 80: 19
- 12a Huang H, Wu W, Zhu K, Hu J, Ye J. Chem Eur J 2013; 19: 3838
- 12b Halland N, Aburel PS, Jørgensen KA. Angew Chem, Int Ed 2004; 43: 1272
- 12c Liang J, Chen Q, Liu L, Jiang X, Wang R. Org Biomol Chem 2013; 11: 1441
- 12d Yang H, Wang Q, Luo Y. et al. Org Biomol Chem 2020; 18: 1607
- 12e Vamisetti GB, Chowdhury R, Kumar M, Ghosh SK. Org Lett 1964; 2016: 18
- 12f Ramachary DB, Krishna PM, Asian J. Org Chem 2016; 5: 729
- 13 Maurya V, Kutwal MS, Appayee C. Org Lett 2021; 23: 1566
- 14 Mehta R, Kumar R, Singh S, Appayee C. J Org Chem 2024; 89: 10892
- 15 Reyes-Rodríguez GJ, Rezayee NM, Vidal-Albalat A, Jørgensen KA. Chem Rev 2019; 119: 4221
- 16a Haindl MH, Schmid MB, Zeitler K, Gschwind RM. RSC Adv 2012; 2: 5941
- 16b Companyó X, Burés J. J Am Chem Soc 2017; 139: 8432
- 16c Hutchinson G, Alamillo-Ferrer C, Burés J. J Am Chem Soc 2021; 143: 6805
- 17 Kumar R, Maurya V, Avinash A, Appayee C. J Org Chem 2024; 89: 8586
- 18a Ouellet SG, Tuttle JB, MacMillan DWC. J Am Chem Soc 2005; 127: 32
- 18b Mayer S, List B. Angew Chem, Int Ed 2006; 45: 4193
- 18c Zhao G-L, Córdova A. Tetrahedron Lett 2006; 47: 7417
- 18d Akagawa K, Akabane H, Sakamoto S, Kudo K. Org Lett 2008; 10: 2035
- 18e Bräuer TM, Zhang Q, Tiefenbacher K. Angew Chem, Int Ed 2016; 55: 7698
- 18f Leinung W, Mitschke B, Leutzsch M, Wakchaure VN, Maji R, List B. J Am Chem Soc 2025; 147: 16722
- 19a Quasdorf KW, Overman LE. Nature 2014; 516: 181
- 19b Peterson EA, Overman LE. Proc Natl Acad Sci U S A 2004; 101: 11943
- 19c Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew Chem, Int Ed 2016; 55: 4156
- 19d Jia Y, Zhang K, Lu L-Q, Cheng Y, Xiao W-J. ACS Catal 2024; 14: 13550
- 19e Hong AY, Stoltz BM. Eur J Org Chem 2013; 2013: 2745
- 19f Silva TS, Coelho F. Beilstein J Org Chem 2021; 17: 1565
- 19g Zeng X-P, Cao Z-Y, Wang Y-H, Zhou F, Zhou J. Chem Rev 2016; 116: 7330
- 19h Ema T, Oue Y, Akihara K, Miyazaki Y, Sakai T. Org Lett 2009; 11: 4866
- 20a Csákÿ AG, Herrán GDL, Murcia MC. Chem Soc Rev 2010; 39: 4080
- 20b Hawner C, Alexakis A. Chem Commun 2010; 46: 7295
- 20c Fillion E, Wilsily A. J Am Chem Soc 2006; 128: 2774
- 20d Wilsily A, Fillion E. Org Lett 2008; 10: 2801
- 20e Hamashima Y, Hotta D, Sodeoka M. J Am Chem Soc 2002; 124: 11240
- 20f Hawner C, Müller D, Gremaud L, Felouat A, Woodward S, Alexakis A. Angew Chem, Int Ed 2010; 49: 7769
- 20g Endo K, Hamada D, Yakeishi S, Shibata T. Angew Chem, Int Ed 2013; 52: 606
- 20h Shintani R, Tsutsumi Y, Nagaosa M, Nishimura T, Hayashi T. J Am Chem Soc 2009; 131: 13588
- 21a Hayashi Y, Kawamoto Y, Honda M. et al. Chem Eur J 2014; 20: 12072
- 21b Mukaiyama T, Ogata K, Sato I, Hayashi Y. Chem Eur J 2014; 20: 13583
- 22a Li C, Ragab SS, Liu G, Tang W. Nat Prod Rep 2020; 37: 276
- 22b Liu Y, Han S-J, Liu W-B, Stoltz BM. Acc Chem Res 2015; 48: 740
- 22c Wang Z. Org Chem Front 2020; 7: 3815
- 22d Long R, Huang J, Gong J, Yang Z. Nat Prod Rep 2015; 32: 1584
- 22e Behenna DC, Liu Y, Yurino T. et al. Nat Chem 2012; 4: 130
- 22f Han S-J, Vogt F, Krishnan S. et al. Org Lett 2014; 16: 3316
- 22g Lemieux RM, Meyers AI. J Am Chem Soc 1998; 120: 5453
- 22h Deng J, Zhou S, Zhang W, Li J, Li R, Li A. J Am Chem Soc 2014; 136: 8185
- 23 Akagawa K, Kudo K. Angew Chem, Int Ed 2012; 51: 12786
- 24 Tian J-M, Yuan Y-H, Tu Y-Q. et al. Chem Commun 2015; 51: 9979
- 25 Kumar R, Avinash A, Mehta R, Appayee C. Org Biomol Chem 2025; 23: 4730
- 26a Dambrova M, Zvejniece L, Liepinsh E. et al. Eur J Pharmacol 2008; 583: 128
- 26b Terrence CF, Sax M, Fromm GH, Chang C-H, Yoo CS. Pharmacology 1983; 27: 85
- 26c Taylor CP, Vartanian MG, Po-Wai Y, Bigge C, Suman-Chauhan N, Hill DR. Epilepsy ResearchEpilepsy Res 1993; 14: 11
- 26d Sommer S, Danysz W, Russ H, Valastro B, Flik G, Hauber W. Int J Neuropsychopharmacol 2014; 17: 2045
- 27a Gotoh H, Ishikawa H, Hayashi Y. Org Lett 2007; 9: 5307
- 27b Wang Y, Li P, Liang X, Zhang TY, Ye J. Chem Commun 2008; 1232
- 27c Mager I, Zeitler K. Org Lett 2010; 12: 1480
- 27d Lombardo M, Montroni E, Quintavalla A, Trombini C. Adv Synth Catal 2012; 354: 3428
- 27e Choi K, Kim S. Eur J Org Chem 2012; 2012: 1119
- 27f Huang Y, Uang B. Chem Asian J 2014; 9: 2444
- 27g Liu W, Chen S, Tian J, Tu Y, Wang S, Zhang F. Adv Synth Catal 2015; 357: 3831
- 27h Ötvös SB, Llanes P, Pericàs MA, Kappe CO. Org Lett 2020; 22: 8122
- 28 Singh S, Kumar R, Dubey NN, Appayee C. Chem Commun 2024; 60: 8768