Subscribe to RSS
DOI: 10.1055/a-2706-0870
Organocatalytic Asymmetric Desymmetrization of 2,5-Cyclohexadienones: From Single-Bond Formation to Domino Reactions
Authors
P. C. acknowledges the Anusandhan National Research Foundation (ANRF) India (File No.: CRG/2022/003212).
Supported by: Anusandhan National Research Foundation (ANRF) India CRG/2022/003212

Abstract
The enantioselective desymmetrization of prochiral and meso-compounds represents a powerful strategy for constructing complex, stereochemically enriched molecules from simple precursors. Among these, 2,5-cyclohexadienones have emerged as highly versatile substrates due to their inherent prochirality, electronic polarization toward nucleophiles, and the feasibility of diverse functionalization at the C4 position. While early advances in this area were largely limited to intramolecular organocatalytic desymmetrizations—particularly via Michael-type additions—recent efforts have begun to explore the untapped potential of intermolecular and domino processes. This account details our group’s contributions to the development of organocatalytic transformations that enable the enantioselective desymmetrization of 2,5-cyclohexadienones, ranging from single bond-forming reactions to complex domino sequences.
Keywords
Organocatalysis - Asymmetric synthesis - Desymmetrization Reactions - Domino reaction - 2,5-CyclohexadienonesPublication History
Received: 30 July 2025
Accepted: 28 August 2025
Accepted Manuscript online:
19 September 2025
Article published online:
10 November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Zeng X-P, Cao Z-Y, Wang Y-H, Zhou F, Zhou J. Chem Rev 2016; 116: 7330-7396
- 1b Xu Y, Zhai T-Y, Xu Z, Ye L-W. Trends Chem 2022; 4: 191-205
- 1c Najera C, Foubelo F, Sansano JM, Yus M. Tetrahedron 2022; 106−107: 132629
- 1d Moon J, Kim S, Lee S. et al. ChemCatChem 2024; 16: e202400690
- 1e Liang R-X, Xie J-Q, Cai H-J. et al. ChemCatChem 2024; 16: e202400947
- 2a Kalstabakken K-A, Harned A-M. Tetrahedron 2014; 70: 9571-9584
- 2b Chen B, He C-Y, Chu W-D, Liu Q-Z. Org Chem Front 2021; 8: 825-843
- 2c Shu T, Cossy J. Chem Soc Rev 2021; 50: 658-666
- 2d Thopate SB, Jadhav SB, Phanindrudu M, Chegondi R. Chem Commun 2023; 59: 3795-3811
- 3a He C, Zhu C, Wang B, Ding H. Chem─Eur J 2014; 20: 15053-15060
- 3b Yao H, Song L, Tong R. J Org Chem 2014; 79: 1498-1504
- 3c Du J-Y, Zeng C, Han X-J. et al. J Am Chem Soc 2015; 137: 4267-4273
- 3d Srinivasulu V, Schilf P, Ibrahim S. et al. Nat Commun 2018; 9: 4989
- 3e Palani V, Hugelshofer C-L, Sarpong R. J Am Chem Soc 2019; 141: 14421-14432
- 4a White B-M, Zhao Y, Kawashima T-E, Branchaud B-P, Pluth M-D, Jasti R. ACS Cent Sci 2018; 4: 1173-1178
- 4b Xu Y, Kaur R, Wang B. et al. J Am Chem Soc 2018; 140: 13413-13420
- 4c Abdulkarim A, Strunk K-P, Bäuerle R. et al. Macromolecules 2019; 52: 4458-4463
- 4d Lovell T-C, Colwell C-E, Zakharov L-N, Jasti R. Chem Sci 2019; 10: 3786-3790
- 5a Vo NT, Pace RDM, O’Hara F, Gaunt MJ. J Am Chem Soc 2008; 130: 404-405
- 5b Gu Q, Rong Z-Q, Zheng C, You S-L. J Am Chem Soc 2010; 132: 4056-4057
- 5c Ratnikov MO, Farkas LE, Doyle MP. J Org Chem 2012; 77: 10294-10303
- 5d Wu W, Li X, Huang H. et al. Angew Chem Int Ed 2013; 125: 1787-1791
- 5e Yao W, Dou X, Wen S, Wu J, Vittal JJ, Lu Y. Nat Commun 2016; 7: 13024
- 6 Coutant C, Bonfils PD, Nun P, Coeffard V. Chem Rec 2023; 23: e202300042
- 7a Enders D, Hüttl MR, Grondal C, Raabe G. Nature 2006; 441: 861-863
- 7b Enders D, Grondal C, Hüttl MRM. Angew Chem Int Ed 2007; 46: 1570-1581
- 7c Grondal C, Jeanty M, Enders D. Nat Chem 2010; 2: 167-178
- 7d Pellissier H. Adv Synth Catal 2012; 354: 237-294
- 7e Volla CMR, Atodiresei I, Rueping M. Chem Rev 2014; 114: 2390-2431
- 7f Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv Synth Catal 2015; 357: 253-281
- 7g Chauhan P, Mahajan S, Enders D. Acc Chem Res 2017; 50: 2809-2821
- 7h Chanda T, Zhao JC-G. Adv Synth Catal 2018; 360: 2-79
- 8 Chauhan P, Mahajan S, Enders D. Chem Rev 2014; 114: 8807-8864
- 9 Yao L, Liu K, Tao H-Y, Qiu G-F, Zhou X, Wang C-J. Chem Commun 2013; 49: 6078-6080
- 10 Chauhan P, Mahajan S, Kaya U, Valkonen A, Rissanen K, Enders D. Adv Synth Catal 2016; 358: 3173-3178
- 11 Tamanna, Sharma D, Chauhan P. Org Biomol Chem 2023; 21: 2570-2574
- 12 Rubush D-M, Morges M-A, Rose B-J, Thamm D-H, Rovis T. J Am Chem Soc 2012; 134: 13554-13557
- 13 Tamanna, Hussain Y, Sharma D, Chauhan P. J Org Chem 2022; 87: 6397-6402
- 14 Tamanna, Kumar M, Joshi K, Chauhan P. Adv Synth Catal 2020; 362: 1907-1926
- 15a Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Nat Commun 2022; 13: 854
- 15b Zhang C, Jiang T, Hua Y-Z, Mei G-J, Wang M-C, Jia S-K. Org Chem Front 2023; 10: 4516-4521
- 15c Magham LR, Thopate SB, Samad A, Chegondi R. Chem Eur J 2023; 29: e202203435
- 16 Sharma M, Tamanna, Chauhan P. Org Lett 2023; 25: 7911-7916
- 17a Battersby AR, Hanssen EB, Martin JA. Chem Commun 1967; 483-484
- 17b Hitosugi N, Nagasaka H, Sakagami H, Matsumoto I, Kawase M. Anticancer Res 2003; 23: 2569-2576
- 17c Zhao ZZ, Liang ZT, Zhou H. et al. Biol Pharm Bull 2005; 28: 105-109
- 17d Gu Q, You SL. Org Lett 2011; 13: 5192-5195
- 17e He L, Zhang Y-H, Guan H-Y, Zhang J-X, Sun Q-Y, Hao X-J. J Nat Prod 2011; 74: 181-184
- 18a Li K, Jin Z, Chan W-L, Lu Y. ACS Catal 2018; 8: 8810-8815
- 18b Thopate SB, Magham LR, Dinda S, Chegondi R. Org Lett 2023; 25: 1072-1077
- 19 Sharma M, Chauhan P. Chem Commun 2025; 61: 1455-1458
- 20a Chauhan P, Kaya U, Enders D. Adv Synth Catal 2017; 359: 888-912
- 20b Hussain Y, Tamanna, Sharma M, Kumar A, Chauhan P. Org Chem Front 2022; 9: 572-592
- 21 Sodhi V, Sharma D, Sharma M, Chauhan P. Org Chem Front 2025; 12: 1144-1149
For organocatalytic asymmetric domino reactions, see: