Subscribe to RSS
DOI: 10.1055/a-2711-1420
Ni-Catalyzed Addition of Arylborons to Alkenes for the Synthesis of Quaternary Carbon Centers
Authors
Supported by: National Key Research and Development Program of China 2021YFF0701600
Supported by: Science and Technology Commission of Shanghai Municipality 24ZR1479000
Supported by: National Natural Science Foundation of China 22171280,22325110,22401288,92256303
Supported by: Program of Shanghai Academic Research Leader 22XD1424900
Funding Information This work was supported by the National Key R&D Program of China (2021YFF0701600); the National Natural Science Foundation of China (22325110, 92256303, 22171280, 22401288); the Program of Shanghai Academic Research Leader (22XD1424900); the Shanghai Science and Technology Committee (24ZR1479000); and the CAS Youth Interdisciplinary Team (JCTD-2021-11).

Abstract
All-carbon quaternary centers are prevalent structural motifs, thus attracting increasing interest from the organic community. We present here a nickel-catalyzed, Markovnikov-selective addition of stable organoborons to simple alkenes, enabled by a diimine ligand. This robust method provides efficient access to quaternary carbon centers with high yields. Furthermore, with a bulky chiral diimine ligand, quaternary carbon stereocenters can be readily prepared. Mechanistic investigations indicate the involvement of an unusual nickel migration from an alkyl nickel to an aryl nickel species.
Keywords
Quaternary carbon centers - Nickel catalysis - Diimine ligand - Addition reaction - OrganoboronsPublication History
Received: 14 July 2025
Accepted after revision: 26 September 2025
Accepted Manuscript online:
26 September 2025
Article published online:
29 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Quasdorf KW, Overman LE. Nature 2014; 516: 181-191
- 1b Trost BM, Jiang C. Synthesis 2006; 2006: 369-396
- 1c Marek I, Minko Y, Pasco M. et al. J Am Chem Soc 2014; 136: 2682-2694
- 1d Liu Y, Han S-J, Liu W-B, Stoltz BM. Acc Chem Res 2015; 48: 740-751
- 1e Xue W, Jia X, Wang X, Tao X, Yin Z, Gong H. Chem Soc Rev 2021; 50: 4162-4184
- 1f Zeng X-P, Cao Z-Y, Wang Y-H, Zhou F, Zhou J. Chem Rev 2016; 116: 7330-7396
- 2a Hird AW, Hoveyda AH. J Am Chem Soc 2005; 127: 14988-14989
- 2b Shintani R, Tsutsumi Y, Nagaosa M, Nishimura T, Hayashi T. J Am Chem Soc 2009; 131: 13588-13589
- 2c Hawner C, Alexakis A. Chem Commun 2010; 46: 7295-7306
- 2d Sidera M, Roth PM, Maksymowicz RM, Fletcher SP. Angew ChemInt Ed 2013; 125: 8153-8157
- 2e Shockley SE, Holder JC, Stoltz BM. Org Process Res Dev 2015; 19: 974-981
- 3a Süsse L, Stoltz BM. Chem Rev 2021; 121: 4084-4099
- 3b Cheng Q, Tu H-F, Zheng C, Qu J-P, Helmchen G, You S-L. Chem Rev 2018; 119: 1855-1969
- 3c Trost BM, Schultz JE. Synthesis 2019; 51: 1-30
- 3d Pàmies O, Margalef J, Cañellas S. et al. Chem Rev 2021; 121: 4373-4505
- 3e Zhang Q, Zhou S-W, Shi C-Y, Yin L. Angew Chem, Int Ed 2021; 60: 26351-26356
- 3f Ohmiya H, Zhang H, Shibata S, Harada A, Sawamura M. Angew Chem, Int Ed 2016; 55: 4777-4780
- 4a Suzuki A. Angew Chem Int Ed 2011; 50: 6722-6737
- 4b Sandford C, Aggarwal VK. Chem Commun 2017; 53: 5481-5494
- 4c Namirembe S, Morken JP. Chem Soc Rev 2019; 48: 3464-3474
- 5a Jia T, Cao P, Liao J. Chem Sci 2018; 9: 546-559
- 5b Riant O, Hannedouche J. Org Biomol Chem 2007; 5: 873-888
- 5c Liu Y-L, Lin X-T. Adv Synth Catal 2019; 361: 876-918
- 5d Huang L, Zhu J, Jiao G. et al. Angew ChemInt Ed 2016; 55: 4527-4531
- 5e Cai Y, Ruan L-X, Rahman A, Shi S-L. Angew Chem Int Ed 2021; 60: 5262-5267
- 6a Quan M, Wu L, Yang G, Zhang W. Chem Commun 2018; 54: 10394-10404
- 6b Shibasaki M, Kanai M. Chem Rev 2008; 108: 2853-2873
- 6c Cui Z, Yu HJ, Yang R-F, Gao W-Y, Feng C-G, Lin G-Q. J Am Chem Soc 2011; 133: 12394-12397
- 6d Zhu J, Huang L, Dong W. et al. Angew Chem Int Ed 2019; 131: 16265-16269
- 7a Mei TS, Patel HH, Sigman MS. Nature 2014; 508: 340-344
- 7b You W, Brown MK. J Am Chem Soc 2015; 137: 14578-14581
- 8a Zhang W-B, Yang X-T, Ma J-B, Su Z-M, Shi S-L. J Am Chem Soc 2019; 141: 5628-5634
- 8b Cai Y, Ye X, Liu S, Shi S-L. Angew Chem, Int Ed 2019; 131: 13567-13571
- 8c Ma JB, Zhao X, Zhang D, Shi S-L. J Am Chem Soc 2022; 144: 13643-13651
- 8d Jiang B, Liu J-M, Shi S-L. ACS Catal 2023; 13: 6068-6075
- 8e Wang D-M, Feng W, Wu Y, Liu T, Wang P. Angew Chem Int Ed 2020; 59: 20399-20584
- 8f Wang D-M, She L-Q, Wu Y, Zhu C, Wang P. Nat Commun 2022; 13: 6878
- 8g Wang Z-C, Luo X, Zhang J-W, Liu C-F, Koh MJ, Shi S-L. Nat Catal 2023; 6: 1087-1097
- 8h Wang Z-C, Xie P-P, Xu Y, Hong X, Shi S-L. Angew Chem Int Ed 2021; 133: 16213-16220
- 8i Wang Z-C, Shi S-L. Acc Chem Res 2025; 58: 2157-2177
- 9a Cai Y, Shi S-L. J Am Chem Soc 2021; 143: 11963-11968
- 9b Liu J-M, Ma X, Chen G. et al. Sci Bull 2025; 70: 674-682
- 9c Ruan L-X, Sun B, Liu J-M, Shi S-L. Science 2023; 379: 662-670
- 9d Sun B, Ruan L-X, Zhao R. et al. Nat Synth 2024; 3: 1091-1103
- 9e Liu S-Y, Wang Z-C, Shi S-L. Chin J Chem 2024; 42: 2161-2165
- 9f Liu X, Shi S-L. Chin J Org Chem 2024; 44: 1884-1896
- 9g Cai Y, Ruan L-X, Rahman A, Shi S-L. Angew Chem, Int Ed 2021; 60: 5262-5267
- 9h Chen G, Liu J-M, Ruan L-X, Shi S-L. Nat Synth. 2025
- 10 Wang Z-C, Gao L, Liu S-Y, Wang P, Shi S-L. J Am Chem Soc 2025; 147: 3023-3031