Synlett, Table of Contents Synlett DOI: 10.1055/a-2720-9415 Letter Alkoxy Group-Boosted Internal Redox Reaction: Application to Benzylic Hydride Shift/Cyclization of Electron-Deficient Aromatic Rings Authors Author Affiliations Mizuki Katagiri 1 Graduate School of Engineering, Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan Tomoko Kawasaki-Takasuka 1 Graduate School of Engineering, Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan Keiji Mori 1 Graduate School of Engineering, Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract We report a C(sp3)–H bond functionalization at the benzylic position of electron-deficient aromatic rings, considered a challenging transformation in hydride shift–mediated C(sp3)–H bond functionalization chemistry. The key to achieving the reaction was the employment of substrates having a methoxy group at the benzylic position. The methoxy group was easily eliminated from the cyclized adducts by treating with a strong Brønsted acid, such as TfOH. A one-pot operation of two processes, C(sp3)–H bond functionalization and MeOH elimination, was also accomplished. Synthetic utility of the present method was well showcased by derivatization from the obtained dihydronaphthalenes. Keywords KeywordsC–H bond functionalization - Redox process - Tetralin - Hydride shift - Sequential reaction Full Text References References For recent reviews on C–H activation, see: 1a Godula K, Sames D. Science 2006; 312: 67 1b Bergman RG. Nature 2007; 446: 391 1c Alberico D, Scott ME, Lautens M. Chem Rev 2007; 107: 174 1d Davies HML, Manning JR. Nature 2008; 451: 417 1e Chen X, Engle KM, Wang D-H, Yu J-Q. Angew Chem Int Ed 2009; 48: 5094 1f Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem Eur J 2010; 16: 2654 1g Lyons TW, Sanford MS. Chem Rev 2010; 110: 1147 1h Davies HML, Du Bois J, Yu J-Q. Chem Soc Rev 2011; 40: 1855 1i Brückl T, Baxter RD, Ishihara Y, Baran PS. Acc Chem Res 2012; 45: 826 1j Qin Y, Lv J, Luo S. Tetrahedron Lett 2014; 55: 551 1k Davies HML, Morton DJ. Org Chem 2016; 81: 343 See also, highlight on visible-light photocatalysis: 1l Hu X-Q, Chen J-R, Xiao W-J. Angew Chem Int Ed 2017; 56: 1960 For recent reviews on internal redox process, see: 2a Tobisu M, Chatani N. Angew Chem Int Ed 2006; 45: 1683 2b Peng B, Maulide N. Chem Eur J 2013; 19: 13274 2c Wang L, Xiao J. Adv Synth Catal 2014; 356: 1137 2d Haibach MC, Seidel D. Angew Chem Int Ed 2014; 53: 5010 2e Kwon SJ, Kim DY. Chem Rec 2016; 16: 1191 2f An X-D, Xiao J. Org Chem Front 2021; 8: 1364 2g Mori K. Bull Chem Soc Jpn 2022; 95: 296 2h Wang L, Xiao J. Org Chem Front 2022; 9: 5041 2i Mori K, Okawa H. Tetrahedron Lett 2022; 110: 154178 2j Shen Y-B, Hu F, Li S-S. Tetrahedron 2022; 127: 133089 For selected examples of the internal redox reactions, see: 3a Pastine SJ, McQuaid KM, Sames D. J Am Chem Soc 2005; 127: 12180 3b Zhang C, Kanta De C, Mal R, Seidel D. J Am Chem Soc 2008; 130: 416 3c McQuaid KM, Sames D. J Am Chem Soc 2009; 131: 402 3d Shinkai D, Murase H, Hata T, Urabe H. J Am Chem Soc 2009; 131: 3166 3e Vadola PA, Sames D. J Am Chem Soc 2009; 131: 16525 3f Zhou G, Zhang J. Chem Commun 2010; 46: 6593 3g Jurberg ID, Peng B, Wöstefeld E, Wasserloos M, Maulide N. Angew Chem Int Ed 2012; 51: 1950 3h Sugiishi T, Nakamura H. J Am Chem Soc 2012; 134: 2504 3i Vadola PA, Carrea I, Sames D. J Org Chem 2012; 77: 6689 3j Alajarin M, Bonillo B, Marin-Luna M, Sanchez-Andrada P, Vidal A. Chem Eur J 2013; 19: 16093 3k Richer MT, Breugst M, Platonova AY. et al. J Am Chem Soc 2014; 136: 6123 3l Shen Y-B, Li L-F, Xiao M-Y, Yang J-M, Liu Q, Xiao J. J Org Chem 2019; 84: 13935 3m Vargáné DS, Wang L-X, Tóth L. et al. Molecules 2020; 25: 1265 3n Shen Y-B, Wang L-X, Sun Y-M. et al. J Org Chem 2020; 85: 1915 3o Hu F, Li X, Ding Z. et al. ACS Catal 2022; 12: 943 3p Liu H, Quan Y, Xie L, Xie X. Front Chem 2022; 10: 840934 3q An X-D, Shao D-Y, Qiu B, Xiao J. Org Lett 2023; 25: 2432 3r Hu F, Sun Z, Pan M. et al. Green Chem 2023; 25: 5134 3s An X-D, Shao D-Y, Qiu B, Xiao J. Org Lett 2023; 25: 2432 3t Hu F, Sun Z, Pan M. et al. Green Chem 2023; 25: 5134 3u Dong Y, Hu F, Wu H. et al. Org Lett 2024; 26: 332 3v Shen Y-B, Zhuang Q-H, Wang X-L. et al. Green Chem 2024; 26: 11899 3w Shen Y-B, Wang X-L, Zhuang Q-H. et al. Org Chem Front 2025; 12: 591 3x Shao D-Y, Qiu B, Wang Z-K, Liu Z-Y, Xiao J, An X-D. Green Synth Catal 2025; 6: 123 For examples of the enantioselective internal redox reactions, see: 4a Murarka S, Deb I, Zhang C, Seidel D. J Am Chem Soc 2009; 131: 13226 4b Kang YK, Kim SM, Kim DY. J Am Chem Soc 2010; 132: 11847 4c Cao W, Liu X, Wang W, Lin L, Feng X. Org Lett 2011; 13: 600 4d Zhou G, Liu F, Zhang J. Chem Eur J 2011; 17: 3101 4e He Y-P, Du Y-L, Luo S-W, Gong LZ. Tetrahedron Lett 2011; 52: 7064 4f Chen L, Zhang L, Lv Z, Cheng J-P, Luo S. Chem Eur J 2012; 18: 8891 4g Zhang L, Chen L, Lv Z, Cheng J-P, Luo S. Chem Asian J 2012; 7: 2569 4h Jiao Z-W, Zhang S-Y, He C. et al. Angew Chem Int Ed 2012; 51: 8811 4i Kang YK, Kim DY. Adv Synth Catal 2013; 355: 3131 4j Suh CW, Woo SB, Kim DY, Asian J. Org Chem 2014; 3: 399 4k Kang YK, Kim DY. Chem Commun 2014; 50: 222 4l Suh CW, Kim DY. Org Lett 2014; 16: 5374 4m Yu J, Li N, Chen D-F, Luo S-W. Tetrahedron Lett 2014; 55: 2859 4n Cao W, Liu X, Guo J, Lin L, Feng X. Chem Eur J 2015; 21: 1632 4o Li J, Preinfalk A, Malide N. J Am Chem Soc 2019; 141: 143 See also, ref 6b For selected recent examples of internal redox reaction developed by our group, see: 5a Yoshida T, Mori K. Chem Commun 2018; 54: 12686 5b Tamura R, Kitamura E, Tustsumi R, Yamanaka M, Akiyama T, Mori K. Org Lett 2019; 21: 2383 5c Otawa Y, Mori K. Chem Commun 2019; 55: 13856 5d Yokoo K, Mori K. Org Lett 2020; 22: 244 5e Hoshino D, Mori K. Org Lett 2021; 23: 9403 5f Okawa H, Kawasaki-Takasuka T, Mori K. Org Lett 2024; 26: 1662 5g Koyama R, Anada M, Sueki S. et al. Chem Commun 2024; 60: 3822 5h Koyama R, Anada M, Sueki S. et al. Tetrahedron Chem 2025; 100138 For the double C(sp3)–H bond functionalization by sequential utilization of the internal redox reaction, see: 6a Mori K, Kurihara K, Yabe S, Yamanaka M, Akiyama T. J Am Chem Soc 2014; 136: 3744 6b Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J Am Chem Soc 2018; 140: 6203 6c Mori K, Umehara N, Akiyama T. Chem Sci 2018; 9: 7327 6d Kataoka M, Otawa Y, Ido N, Mori K. Org Lett 2019; 21: 9334 6e Yokoo K, Sakai D, Mori K. Org Lett 2020; 22: 5801 6f Nakamura I, Anada M, Sueki S, Makino K, Mori K. Adv Synth Catal 2023; 365: 502 See, also: 6g Zhou X-L, Yeung C-T, Chan WTK, Law G-L. Adv Synth Catal 2022; 364: 732 6h Yamagishi R, Anada M, Sueki S. et al. Org Lett 2025; 27: 1961 7 Mori K, Sueoka S, Akiyama T. Chem Lett 2018; 40: 1386 Related benzylic hydride shift/cyclization prosess, see: 8a Mahoney SJ, Moon DT, Hollinger J, Fillion E. Tetrahedron Lett 2009; 50: 4705 8b Mori K, Sueoka S, Akiyama T. J Am Chem Soc 2011; 133: 2424 8c Yoshida T, Mori K. Chem Commun 2017; 53: 4319 8d Matsui W, Matsuno T, Takiguchi I. et al. Org Lett 2025; 27: 6198 9 Yokoo K, Mori K. Chem Commun 2018; 54: 6927 Related ether-oxygen (ketal/acetal-oxygen) selective reactions, see: 10a Mori A, Maruoka K, Yamamoto H. Tetrahedron Lett 1984; 25: 4421 10b Murata S, Suzuki M, Noyori R. J Am Chem Soc 1980; 102: 3248 10c Noyori R, Murata S, Suzuki M. Tetrahedron 1981; 37: 3899 11 Detailed examination of the reaction conditions from 2a was described in SI. 12 Simultaneous treatment of 1a with Sc(OTf)3 (0.5 mol%) and TfOH (5 mol%) in refluxing DCE for 21 h resulted in the formation of 3a in only 14%, accompanied by 2a (57%) and 6 (30). This result clearly indicates the importance of sequential operation. 13 Unpublished result. 14 Amano K, Kawasaki-Takasuka T, Mori K. Org Lett 2024; 36: 1824 Supplementary Material Supplementary Material Supplementary Material (PDF) (opens in new window)