Subscribe to RSS
DOI: 10.1055/a-2764-0922
Sulfoximine-Assisted Asymmetric C(sp2)–H Bond Functionalizations
Authors
We thank the University of Hyderabad (UoH-IoE and PURSE-FIST) for the overall facility. S.R.S. thank CSIR-UGC for the fellowship. This research was supported by the SERB-India (CRG-2023-2902).

Dedication
Dedicated to Prof. S. Chandrasekaran on the occasion of his 80th birthday.
Abstract
Sulfoximines, the monoaza analogues of sulfones featuring a stereogenic sulfur atom, have emerged as highly versatile molecular frameworks due to their remarkable chemical stability, tunable electronic properties, and broad applications across pharmaceutical, agrochemical, and material science domains. The presence of an N(sp2) center imparts both nucleophilic and basic characteristics, enabling strong coordination with transition metals and thus expanding their utility in diverse catalytic transformations. Leveraging this distinctive coordination ability, transition metal-catalyzed C–H functionalization directed by sulfoximines has recently gained significant attention as a powerful tool for the synthesis of complex and value-added molecular architectures. This account aims to summarize key advancements in the field of stereoselective C–H activation involving sulfoximines, both as reactive substrates and as chiral directing groups. Special emphasis is placed on their ability to mediate asymmetric C–H functionalization processes, where the inherent sulfur-centered chirality can be effectively transferred to neighboring carbon centers, offering new opportunities for constructing enantioenriched frameworks with high precision and efficiency.
Keywords
S-Stereogenic sulfoximine - Reusable chiral directing group - C–H activation - Diastereoselectivity - Asymmetric synthesis - EnantioselectivityPublication History
Received: 16 October 2025
Accepted after revision: 03 December 2025
Accepted Manuscript online:
17 December 2025
Article published online:
30 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Bentley HR, McDermott EE, Pace J, Whitehead J, Moran KT. Nature 1949; 163: 675-676
- 1b Johnson CR. Acc Chem Res 1973; 6: 341-347
- 1c Trost BM, Matsuoka RT. Synlett 1992; 27-30
- 1d Okamura H, Bolm C. Chem Lett 2004; 33: 482-487
- 1e Reggelin M, Zur C. Synthesis 2000; 1
- 1f Gais H-J. Heteroat Chem 2007; 18: 472-481
- 2a Frings M, Thomé I, Bolm C. Beilstein J Org Chem 2012; 8: 1443-1451
- 2b Lücking U. Angew Chem Int Ed 2013; 52: 9399-9408
- 2c Frings M, Bolm C, Blum A, Gnamm C. Eur J Med Chem 2017; 126: 225-245
- 2d Chinthakindi P, Naicker T, Thota N, Govender T, Kruger HG, Arvidsson PI. Angew Chem Int Ed 2017; 56: 4100-4109
- 2e Han Y, Xing K, Zhang J. et al. Eur J Med Chem 2021; 209: 112885-112895
- 2f Mäder P, Kattner L. J Med Chem 2020; 63: 14243-14275
- 3a Andresini M, Tota A, Degennaro L, Bull JA, Luisi R. Chem Eur J 2021; 27: 17293-17321
- 3b Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P. Chem Rev 2017; 117: 4147-4181
- 4a Reggelin M, Weinberger H, Gerlach M, Welcker R. J Am Chem Soc 1996; 118: 4765-4777
- 4b Gais H-J, Mueller H, Bund J, Scommoda M, Brandt J, Raabe G. J Am Chem Soc 1995; 117: 2453-2466
- 4c Bolm C, Kaufmann D, Zehnder M, Neuburger M. Tetrahedron Lett 1996; 37: 3985-3988
- 4d Bolm C, Simic O. J Am Chem Soc 2001; 123: 3830-3831
- 4e Reggelin M, Weinberger H, Spohr V. Adv Synth Catal 2004; 346: 1295-1306
- 5 Yadav MR, Rit RK, Sahoo AK. Chem Eur J 2012; 18: 5541-5545
- 6a Yadav MR, Rit RK, Shankar M, Sahoo AK. Asian J Org Chem 2015; 4: 846-864
- 6b Rit RK, Yadav MR, Koushik G, Sahoo AK. Tetrahedron 2015; 71: 4450-4459
- 6c Ghosh K, Rit RK, Ramesh E, Sahoo AK. Angew Chem Int Ed 2016; 55: 7821-7825
- 6d Shankar M, Rit RK, Sau S, Mukherjee K, Gandon V, Sahoo AK. Chem Sci 2020; 11: 10770-10777
- 6e Ghosh K, Rit RK, Shankar M, Mukherjee K, Sahoo AK. Chem Rec 2020; 20: 1017-1042
- 6f Saha A, Shankar M, Sau S, Sahoo AK. Chem Commun 2022; 58: 4561-4587
- 7a Dong W, Wang L, Parthasarathy K, Pan F, Bolm C. Angew Chem Int Ed 2013; 52: 11573-11576
- 7b Cheng Y, Bolm C. Angew Chem Int Ed 2015; 54: 12349-12352
- 8a Davies HML, Beckwith REJ. Chem Rev 2003; 103: 2861-2904
- 8b Giri R, Shi B-F, Engle KM, Maugel N, Yu J-Q. Chem Soc Rev 2009; 38: 3242-3272
- 8c Wencel-Delord J, Colbert F. Chem Eur J 2013; 19: 14010-14017
- 8d Engle KM, Yu J-Q. J Org Chem 2013; 78: 8927-8955
- 8e Zheng C, You S-L. RSC Adv 2014; 4: 6173-6214
- 8f Newton CG, Wang S-G, Oliveira CC, Cramer N. Chem Rev 2017; 117: 8908-8976
- 8g Saint-Denis TG, Zhu R-Y, Chen G, Wu Q-F, Yu J-Q. Science 2018; 359: eaao4798
- 8h Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew Chem Int Ed 2019; 58: 12803-12818
- 8i Yang K, Song M, Liu H, Ge H. Chem Sci 2020; 11: 12616
- 8j Yoshino T, Satake S, Matsunaga S. Chem Eur J 2020; 26: 7346-7357
- 8k Liu C-X, Zhang W-W, Yin S-Y, Gu Q, You S-L. J Am Chem Soc 2021; 143: 14025-14040
- 8l Su B, Hartwig JF. Angew Chem Int Ed 2022; 61: e202113343
- 8m Lucas EL, Lam NYS, Zhuang Z, Chan HSS, Strassfeld DA, Yu J-Q. Acc Chem Res 2022; 55: 537-550
- 8n Zhan B-B, Jin L, Shi B-F. Trends Chem 2022; 4: 220-235
- 8o Cong X, Huang L, Hou Z. Tetrahedron 2023; 135: 133323
- 8p Qian P-F, Zhou T, Shi B-F. Chem Commun 2023; 59: 12669-12684
- 8q Liu CX, Yin SY, Zhao FN. et al. Chem Rev 2023; 123: 10079-10134
- 8r Liang H, Wang J. Chem Eur J 2023; 29: e202202461
- 9a Wang J, Frings M, Bolm C. Angew Chem Int Ed 2013; 52: 8661-8665
- 9b Legros J, Bolm C. Angew Chem Int Ed 2003; 42: 5487-5489
- 9c Dong S, Frings M, Cheng H. et al. J Am Chem Soc 2016; 138: 2166-2169
- 9d Wang J, Frings M, Bolm C. Chem Eur J 2014; 20: 966-969
- 9e Diesel J, Cramer N. ACS Catal 2019; 9: 9164-9177
- 9f Liu W, Ke J, He C. Chem Sci 2021; 12: 10972-10984
- 9g Suleman M, Huang T, Zhou T, Chen Z, Shi B. ACS Catal 2025; 15: 5511-5530
- 10 Sun Y, Cramer N. Angew Chem Int Ed 2018; 57: 15539-15543
- 11 Brauns M, Cramer N. Angew Chem Int Ed 2019; 58: 8902-8906
- 12 Shen B, Wan B, Li X. Angew Chem Int Ed 2018; 57: 15534-15538
- 13 Mukherjee K, Grimblat N, Sau S. et al. Chem Sci 2021; 12: 14863-14870
- 14a Zhou T, Qian P, Li J. et al. J Am Chem Soc 2021; 143: 6810-6816
- 14b Qian P, Zhou T, Li J, Zhou Y, Shi B-F. ACS Catal 2022; 12: 13876-13883
- 14c Zhou Y, Zhou T, Qian P, Li J, Shi B-F. ACS Catal 2022; 12: 9806-9811
- 14d Li J, Xie P, Zhou T. et al. ACS Catal 2022; 12: 9083-9091
- 15 Huang L-T, Hirata Y, Kato Y. et al. Synthesis 2022; 54: 4703-4710
- 16 Hirata Y, Sekine D, Kato Y. et al. Angew Chem Int Ed 2022; 61: e202205341
- 17 Zhou G, Zhou T, Jiang A-L. et al. Angew Chem Int Ed 2024; 63: e202319871
- 18 Liu H, Jiang J-J, Wang J. ACS Catal 2024; 14: 17398-17404
- 19 Xiong Y, Suleman M, Xu S, Chen Z. Org Chem Front 2025; 12: 614-622
- 20 Song S, Zhou X, Ke Z, Xu S. Angew Chem Int Ed 2023; 62: e202217130
- 21 Zeng D, Zhang X, Wang M, Jiang X. Nat Commun 2025; 16: 3046
- 22 Sau S, Mukherjee K, Kondalarao K, Gandon V, Sahoo AK. Org Lett 2023; 25: 7667-7672
- 23 Naskar P, Sau S, Sahoo AK. Chem Commun 2025; 61: 16098-16101
- 24 Sau S, Kanikarapu S, Gandon V, Sahoo AK. Chem Eur J 2024; 30: e202401639
- 25 Sau S, Kondalarao K, Naskar P, Sahoo AK. Org Lett 2024; 26: 9334-9339