Subscribe to RSS
DOI: 10.1055/a-2773-5288
Metallaphotoredox Catalysis Unlocks Aldehydes as Safe and Versatile Nonstabilized Carbene Precursors
Authors
This work was supported by the National Natural Science Foundation of China (No.22471049), the Science and Technology Plan of Shenzhen (No. JCYJ20230807094408017, JCYJ20220531095016036, and GXWD20220817131550002). The project is also supported by State Key Laboratory of Urban-rural Water Resources and Envi-ronment (Harbin Institute of Technology) (No. 2025DX15) and the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University.
Supported by: Science and Technology Plan of Shenzhen JCYJ20230807094408017 Supported by: Science and Technology Plan of Shenzhen JCYJ20220531095016036 Supported by: Science and Technology Plan of Shenzhen GXWD20220817131550002 Supported by: State Key Laboratory of Urban-rural Water Resources and Environment (Harbin Institute of Technology) 2025DX15 Supported by: Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University

Abstract
The direct generation of nonstabilized carbenes from simple feedstocks represents a central challenge in modern organic synthesis. Traditional reliance on diazo compounds imposes significant limitations in safety and functional group compatibility. Herein, we describe a transformative strategy that merges photoredox and iron catalysis, utilizing a transient ligated boryl radical to directly unlock abundant aliphatic aldehydes as practical and powerful carbene precursors. This paradigm shift enables a diverse array of cyclopropanation and X–H insertion reactions under simple, mild, and safe conditions, heralding a new era for carbene chemistry using foundational chemical feedstocks.
Keywords
Photoredox catalysis - Iron catalysis - Ligated boryl radical - Nonstabilized carbenes - Aliphatic aldehydes - CyclopropanationPublication History
Received: 07 November 2025
Accepted after revision: 15 December 2025
Accepted Manuscript online:
16 December 2025
Article published online:
30 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Lovering F, Bikker J, Humblet C. J Med Chem 2009; 52: 6752
- 1b Talele TT. J Med Chem 2016; 59: 8712
- 1c Sun M-R, Li H-L, Ba M-Y, Cheng W, Zhu H-L, Duan Y-T. Mini-Rev Med Chem 2021; 21: 150
- 1d Shearer J, Castro JL, Lawson AD, MacCoss M, Taylor RD. J Med Chem 2022; 65: 8699
- 2a Ebner C, Carreira EM. Chem Rev 2017; 117: 11651
- 2b Lebel H, Marcoux J-F, Molinaro C, Charette AB. Chem Rev 2003; 103: 977
- 2c Wu W, Lin Z, Jiang H. Org Biomol Chem 2018; 16: 7315
- 2d Chen ZL, Xie Y, Xuan J. Eur J Org Chem 2022; 2022: e202201066
- 3 Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Org Process Res Dev 2019; 24: 67
- 4a Simmons HE, Smith RD. J Am Chem Soc 1958; 80: 5323
- 4b Kanai H, Hiraki N, Iida S. Bull Chem Soc Jpn 1983; 56: 1025
- 4c Davies HML, Alford JS. Chem Soc Rev 2014; 43: 5151
- 4d Jia M, Ma S. Angew Chem Int Ed 2016; 55: 9134
- 4e Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem Rev 2019; 119: 8701
- 4f Kumar S, Borkar V, Mujahid M, Nunewar S, Kanchupalli V. Org Biomol Chem 2022; 21: 24
- 4g Liu M, Uyeda C. Angew Chem Int Ed 2024; 63: e202406218
- 5a Bamford WR, Stevens TS. J Chem Soc 1952; 1952: 4735
- 5b Aggarwal VK, Alonso E, Hynd G. et al. Angew Chem Int Ed 2001; 40: 1430
- 5c Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcelloni M. Angew Chem Int Ed 2001; 40: 1433
- 5d Barluenga J, Moriel P, Valdés C, Aznar F. Angew Chem Int Ed 2007; 46: 5587
- 5e Barluenga J, Valdés C. Angew Chem Int Ed 2011; 50: 7486
- 5f Shao Z, Zhang H. Chem Soc Rev 2012; 41: 560
- 5g Radolko J, Ehlers P, Langer P. Adv Synth Catal 2021; 363: 3616
- 5h Vaishya V, Singhal R, Kriplani T, Pilania M. Synthesis 2022; 54: 3941
- 5i Cai B-G, Empel C, Jana S, Xuan J, Koenigs RM. ACS Catal 2023; 13: 11851
- 6a Berger KE, Martinez RJ, Zhou J, Uyeda C. J Am Chem Soc 2023; 145: 9441
- 6b Uyeda C, Kalb AE. Chem Catal 2022; 2: 667
- 6c Werth J, Berger K, Uyeda C. Adv Synth Catal 2020; 362: 348
- 6d Werth J, Uyeda C. Angew Chem Int Ed 2018; 130: 14098
- 6e Aragón J, Sun S, Fernández S, Lloret-Fillol J. Angew Chem Int Ed 2024; 63: e202405580
- 6f Ni S, Spinnato D, Cornella J. J Am Chem Soc 2024; 146: 22140
- 7a Zhang L, DeMuynck BM, Paneque AN, Rutherford JE, Nagib DA. Science 2022; 377: 649
- 7b Zhang L, Nagib DA. Nat Chem 2024; 16: 107
- 7c DeMuynck BM, Zhang L, Ralph EK, Nagib DA. Chem 2024; 10: 1015
- 7d Ngo DT, Garwood JJ, Nagib DA. J Am Chem Soc 2024; 146: 24009
- 8 Zheng Y-T, Wu Y-X, Yang N. et al. J Am Chem Soc 2025; 147: 43254
- 9 Lin X, Shen H, Wang Z. ACS Catal 2025; 15: 19030
- 10 Liang R-B, Yang C, Xia W, Guo L. J Am Chem Soc 2025; 147: 36781
- 11 Zhang L, Zhou F-Y, Jiao L. Acc Chem Res 2025; 58: 1023
- 12 Liang R-B, Miao T-T, Li X-R. et al. Chem Sci 2025; 16: 3580
- 13a Wang G, Cao J, Gao L. et al. J Am Chem Soc 2017; 139: 3904
- 13b Cao J, Wang G, Gao L, Cheng X, Li S. Chem Sci 2018; 9: 3664
- 14a Boyle BT, Dow NW, Kelly CB, Bryan MC, MacMillan DW. Nature 2024; 631: 789
- 14b Vargas RM, Theys RD, Hossain MM. J Am Chem Soc 1992; 114: 777
- 14c Goswami M, de Bruin B, Dzik WI. Chem Commun 2017; 53: 4382
- 14d Brault D, Neta P. J Phys Chem 1987; 91: 4156
- 15a Zhang L, Jiao L. J Am Chem Soc 2019; 141: 9124
- 15b Zhang L, Wu ZQ, Jiao L. Angew Chem Int Ed 2020; 132: 2111
- 16 Wu J, He L, Noble A, Aggarwal VK. J Am Chem Soc 2018; 140: 10700