Subscribe to RSS
DOI: 10.1055/a-2798-0666
Catalyst-Free Alkylation of Quinoxalines in Water
Authors
Funding Information This work is supported by the Doctoral Research Startup Fund (Huaibei Normal University, 03106282); the Natural Science Research Project of Anhui Education Department (2025AHGXZK40568); and the Open Project Funds for the Laboratory (Huaibei Normal University, 2025xjsyskf036).

Abstract
A catalyst-free nucleophilic allylation of quinoxalines in water has been developed, enabling efficient synthesis of versatile, functionalized C3-alkylated quinoxalin-2(1H)-ones. This method selectively activates the imine moiety through hydrogen-bonding interactions, shunning conventional strategies that require transition metals, photoirradiation, or elevated temperatures. Remarkably, the reaction exhibits accelerated kinetics in water, due to strong hydrogen-bonding effects that facilitate reactant aggregation.
Publication History
Received: 02 November 2025
Accepted after revision: 27 January 2026
Accepted Manuscript online:
27 January 2026
Article published online:
17 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Bisoyi A, Tripathy AR, Yedase GS, P SS Choudhury U, Yatham VR. J Org Chem 2023; 88: 2631-2641
- 1b Lawrence DS, Copper JE, Smith CD. J Med Chem 2001; 44: 594-601
- 2 Cao S, Chen J-X, Zhang X-L. et al. Org Lett 2024; 26: 5833-5838
- 3a Sun K, Xiao F, Yu B, He W-M. Chin J Catal 2021; 42: 1921-1943
- 3b Monika M, Selvakumar S. Synthesis 2019; 51: 4113-4136
- 3c Sharma A, Singh N, Kumar R, Sharma A. Adv Synth Catal 2024; 366: 2735-2741
- 3d Zuo Y, Bai X, Wang C. et al. Org Biomol Chem 2025; 23: 5703-5727
- 4 Qiu Z, Huang X, Wu J, Liu Z-Q. Adv Synth Catal 2023; 365: 318-322
- 5a Ban K, Imai K, Oyama S. et al. Angew Chem Int Ed 2023; 62: e202311058
- 5b Wright TB, Evans PA. Chem Rev 2021; 121: 9196-9242
- 6a Jeffrey JL, Terrett JA, MacMillan DWC. Science 2015; 349: 1532-1536
- 6b Rezazadeh S, Martin MI, Kim RS, Yap GPA, Rosenthal J, Watson DA. J Am Chem Soc 2023; 145: 4707-4715
- 6c Deibl N, Kempe R. J Am Chem Soc 2016; 138: 10786-10789
- 7 Yashwantrao G, Saha S. Org Chem Front 2021; 8: 2820-2862
- 8a Woźniak Ł, Murphy JJ, Melchiorre P. J Am Chem Soc 2015; 137: 5678-5681
- 8b Kita Y, Kavthe RD, Oda H, Mashima K. Angew Chem Int Ed 2016; 55: 1098-1101
- 8c Liu H-F, He M-X, Tang H-T. Org Chem Front 2022; 9: 5955-5961
- 9 Yao L, Zhu D, Wang L, Liu J, Zhang Y, Li P. Chin Chem Lett 2021; 32: 4033-4037
- 10 Yuan J, Fu J, Yin J. et al. Org Chem Front 2018; 5: 2820-2828
- 11a Cortes-Clerget M, Yu J, Kincaid JRA, Walde P, Gallou F, Lipshutz BH. Chem Sci 2021; 12: 4237-4266
- 11b Kitanosono T, Kobayashi S. Chem Eur J 2020; 26: 9408-9429
- 11c Simon M-O, Li C-J. Chem Soc Rev 2012; 41: 1415-1427
- 12 Savéant J-M. Energy Environ Sci 2012; 5: 7718-7731
- 13a Wada R, Shibuguchi T, Makino S, Oisaki K, Kanai M, Shibasaki M. J Am Chem Soc 2006; 128: 7687-7691
- 13b Li W-S, Kuo T-S, Hsieh M-C, Tsai M-K, Wu P-Y, Wu H-L. Org Lett 2020; 22: 5675-5679
- 13c Ramadhar TR, Bansagi J, Batey RA. J Org Chem 2013; 78: 1216-1221
- 13d De Souza VP, Oliveira CK, De Souza TM. et al. Molecules 2016; 21: 1539
- 13e Beveridge RE, Batey RA. Org Lett 2014; 16: 2322-2325
- 13f Nowrouzi F, Thadani AN, Batey RA. Org Lett 2009; 11: 2631-2634
- 13g Nowrouzi F, Janetzko J, Batey RA. Org Lett 2010; 12: 5490-5493
- 13h Couto TR, Freitas JCR, Cavalcanti IH, Oliveira RA, Menezes PH. Tetrahedron 2013; 69: 7006-7010
- 14 Experimental Procedure The mixture of 1-methylquinoxalin-2(1H)-one 1a (0.2 mmol), potassium allyltrifluoroborate 2a (0.3 mmol) in 1 mL H2O were stirred at room temperature. After the completion (as indicated by TLC), the mixture was extracted with ethyl acetate. The combined organic phase was dried over Na2SO4 and concentrated in vacuo. The residue was further purified by column chromatography on silica gel using PE/EA (5:1) to afford the desired products 3a as a brown solid (67% yield). 1H NMR (600 MHz, CDCl3) δ 6.95–6.91 (m, 1H), 6.91 (d, J = 0.8 Hz, 1H), 6.87–6.83 (m, 1H), 6.70–6.66 (m, 1H), 5.84–5.75 (m, 1H), 5.22 (d, J = 10.1 Hz, 1H), 5.15 (dd, J = 17.1, 1.3 Hz, 1H), 3.84 (dd, J = 10.0, 3.3 Hz, 1H), 3.37 (s, 3H), 2.73–2.68 (m, 1H), 2.39–2.30 (m, 1H); 13C NMR (151 MHz, CDCl3) δ 167.52, 134.47, 133.85, 129.15, 123.77, 119.81, 119.62, 114.76, 114.71, 55.52, 35.98, 29.23; HRMS (ESI): calcd for [C12H14N2ONa]+ 225.0998, found 225.099.