ABSTRACT
Intraperitoneal adhesions remain a costly, long-term sequela of abdominal surgery.
They cause significant postoperative morbidity and difficult reoperative surgery.
Although adhesions have been recognized for more than 250 years, a uniformly effective
method of adhesion prevention does not exist. In recent years, research has become
more focused on understanding the biochemical and cellular processes involved in adhesion
formation—a necessary step in the development of safe and effective means of adhesion
prevention. Studies suggest that events critical to adhesion outcome begin within
hours of an abdominal operation with the balance between fibrin deposition and degradation
being of central importance. A pharmacologic agent administered at the time of surgery
that could tip the fibrinolytic balance in favor of fibrin degradation without interfering
with postoperative wound healing would be an ideal candidate in the prevention of
adhesion formation. Further research into the molecular and cellular events that underlie
adhesion formation is essential and undoubtedly will lead to successful adhesion prevention.
KEYWORDS
Peritoneal adhesion - tissue plasminogen activator - neurokinin-1 receptor antagonist
- statins - methylene blue
REFERENCES
- 1
Becker J M, Dayton M T, Fazio V W et al..
Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable
membrane: a prospective, randomized, double-blind multicenter study.
J Am Coll Surg.
1996;
183
297-306
- 2
van Goor H.
Consequences and complications of peritoneal adhesions.
Colorectal Dis.
2007;
9
25-34
- 3
Liakakos T, Thomakos N, Fine P M, Dervenis C, Young R L.
Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Recent
advances in prevention and management.
Dig Surg.
2001;
18
260-273
- 4 Wiseman D M. Adhesion related disease - adhesion related deaths. 2003. http://Available at: www.adhesions.org/pt4magnitude.htm Accessed November 1, 2007
- 5
Kossi J, Salminen P, Rantala A, Laato M.
Population-based study of the surgical workload and economic impact of bowel obstruction
caused by postoperative adhesions.
Br J Surg.
2003;
90
1441-1444
- 6
Ivarsson M L, Holmdahl L, Franzen G, Risberg B.
Cost of bowel obstruction resulting from adhesions.
Eur J Surg.
1997;
163
679-684
- 7
Wilson M S.
Practicalities and costs of adhesions.
Colorectal Dis.
2007;
9
60-65
- 8
van der Wal J B, Jeekel J.
Biology of the peritoneum in normal homeostasis and after surgical trauma.
Colorectal Dis.
2007;
9
9-13
- 9
Arici A, Tazuke S I, Attar E, Kliman H J, Olive D L.
Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and
modulation of interleukin-8 expression in human mesothelial cells.
Mol Hum Reprod.
1996;
2
40-45
- 10
Liberek T, Topley N, Luttmann W, Williams J D.
Adherence of neutrophils to human peritoneal mesothelial cells: role of intercellular
adhesion molecule-1.
J Am Soc Nephrol.
1996;
7
208-217
- 11
Offner F A, Obrist P, Stadlmann S et al..
IL-6 secretion by human peritoneal mesothelial and ovarian cancer cells.
Cytokine.
1995;
7
542-547
- 12
Bachus K E, Doty E, Haney A F, Weinberg J B.
Differential effects of interleukin-1 alpha, tumor necrosis factor-alpha, indomethacin,
hydrocortisone, and macrophage co-culture on the proliferation of human fibroblasts
and peritoneal mesothelial cells.
J Soc Gynecol Investig.
1995;
2
636-642
- 13
Drollette C M, Badawy S Z.
Pathophysiology of pelvic adhesions. Modern trends in preventing infertility.
J Reprod Med.
1992;
37
107-121
- 14
Rodgers K E, diZerega G S.
Function of peritoneal exudate cells after abdominal surgery.
J Invest Surg.
1993;
6
9-23
- 15 diZerega G S.
Peritoneum, peritoneal healing, and adhesion formation. In: diZerega GS Peritoneal Surgery. New York, NY; Springer-Verlag 2000: 3-37
- 16
Cheong Y C, Laird S M, Li T C et al..
Peritoneal healing and adhesion formation/reformation.
Hum Reprod Update.
2001;
7
556-566
- 17
Thompson J.
Pathogenesis and prevention of adhesion formation.
Dig Surg.
1998;
15
153-157
- 18
Ghellai A M, Stucchi A F, Chegini N et al..
Role of transforming growth factor beta-1 in peritonitis-induced adhesions.
J Gastrointest Surg.
2000;
4
316-323
- 19
Holmdahl L, Kotseos K, Bergstrom M et al..
Overproduction of transforming growth factor-beta1 (TGF-beta1) is associated with
adhesion formation and peritoneal fibrinolytic impairment.
Surgery.
2001;
129
626-632
- 20 Thompson J.
Peritoneal fibrinolysis and adhesion formation. In: diZerega GS Peritoneal Surgery. New York, NY; Springer-Verlag 2000: 133-142
- 21
diZerega G S, Campeau J D.
Peritoneal repair and post-surgical adhesion formation.
Hum Reprod Update.
2001;
7
547-555
- 22
Monk B J, Berman M L, Montz F J.
Adhesions after extensive gynecologic surgery: clinical significance, etiology, and
prevention.
Am J Obstet Gynecol.
1994;
170
1396-1403
- 23
Tulandi T, Chen M F, Al-Took S, Watkin K.
A study of nerve fibers and histopathology of postsurgical, postinfectious, and endometriosis-related
adhesions.
Obstet Gynecol.
1998;
92
766-768
- 24
Herrick S E, Mutsaers S E, Ozua P et al..
Human peritoneal adhesions are highly cellular, innervated, and vascularized.
J Pathol.
2000;
192
67-72
- 25
Sulaiman H, Gabella G, Davis M C et al..
Presence and distribution of sensory nerve fibers in human peritoneal adhesions.
Ann Surg.
2001;
234
256-261
- 26
Holmdahl L.
The role of fibrinolysis in adhesion formation.
Eur J Surg Suppl.
1997;
579
24-31
- 27
Holmdahl L.
Mechanisms of adhesion development and effects on wound healing.
Eur J Surg Suppl.
1997;
579
7-9
- 28
Holmdahl L, Falkenberg M, Ivarsson M L, Risberg B.
Plasminogen activators and inhibitors in peritoneal tissue.
APMIS.
1997;
105
25-30
- 29
Holmdahl L, Eriksson E, al-Jabreen M, Risberg B.
Fibrinolysis in human peritoneum during operation.
Surgery.
1996;
119
701-705
- 30
Holmdahl L, Eriksson E, Eriksson B I, Risberg B.
Depression of peritoneal fibrinolysis during operation is a local response to trauma.
Surgery.
1998;
123
539-544
- 31
Doody K J, Dunn R C, Buttram Jr V C.
Recombinant tissue plasminogen activator reduces adhesion formation in a rabbit uterine
horn model.
Fertil Steril.
1989;
51
509-512
- 32
Dorr P J, Vemer H M, Brommer E J et al..
Prevention of postoperative adhesions by tissue-type plasminogen activator (t-PA)
in the rabbit.
Eur J Obstet Gynecol Reprod Biol.
1990;
37
287-291
- 33
Menzies D, Ellis H.
The role of plasminogen activator in adhesion prevention.
Surg Gynecol Obstet.
1991;
172
362-366
- 34
Orita H, Fukasawa M, Girgis W, diZerega G S.
Inhibition of postsurgical adhesions in a standardized rabbit model: intraperitoneal
treatment with tissue plasminogen activator.
Int J Fertil.
1991;
36
172-177
- 35
Dunn R C, Mohler M.
Effect of varying days of tissue plasminogen activator therapy on the prevention of
postsurgical adhesions in a rabbit model.
J Surg Res.
1993;
54
242-245
- 36
Falk K, Bjorquist P, Stromqvist M, Holmdahl L.
Reduction of experimental adhesion formation by inhibition of plasminogen activator
inhibitor type 1.
Br J Surg.
2001;
88
286-289
- 37
Sulaiman H, Dawson L, Laurent G J, Bellingan G J, Herrick S E.
Role of plasminogen activators in peritoneal adhesion formation.
Biochem Soc Trans.
2002;
30
126-131
- 38
Saed G M, Diamond M P.
Modulation of the expression of tissue plasminogen activator and its inhibitor by
hypoxia in human peritoneal and adhesion fibroblasts.
Fertil Steril.
2003;
79
164-168
- 39
van Hinsbergh V W, Kooistra T, Scheffer M A, Hajo van Bockel J, van Muijen G N.
Characterization and fibrinolytic properties of human omental tissue mesothelial cells.
Comparison with endothelial cells.
Blood.
1990;
75
1490-1497
- 40
Rougier J P, Guia S, Hagege J, Nguyen G, Ronco P M.
PAI-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures:
transcriptional regulation by TGF-beta 1.
Kidney Int.
1998;
54
87-98
- 41
Bittinger F, Schepp C, Brochhausen C et al..
Remodeling of peritoneal-like structures by mesothelial cells: its role in peritoneal
healing.
J Surg Res.
1999;
82
28-33
- 42
Saed G M, Zhang W, Chegini N, Holmdahl L, Diamond M P.
Alteration of type I and III collagen expression in human peritoneal mesothelial cells
in response to hypoxia and transforming growth factor-beta1.
Wound Repair Regen.
1999;
7
504-510
- 43
Martin J, Yung S, Robson R L, Steadman R, Davies M.
Production and regulation of matrix metalloproteinases and their inhibitors by human
peritoneal mesothelial cells.
Perit Dial Int.
2000;
20
524-533
- 44
Ha H, Cha M K, Choi H N, Lee H B.
Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular
matrix proteins by human peritoneal mesothelial cells.
Perit Dial Int.
2002;
22
171-177
- 45
Sitter T, Toet K, Fricke H et al..
Modulation of procoagulant and fibrinolytic system components of mesothelial cells
by inflammatory mediators.
Am J Physiol.
1996;
271
R1256-R1263
- 46
Haney A F, Hesla J, Hurst B S et al..
Expanded polytetrafluoroethylene (Gore-Tex Surgical Membrane) is superior to oxidized
regenerated cellulose (Interceed TC7 + ) in preventing adhesions.
Fertil Steril.
1995;
63
1021-1026
- 47
Risberg B.
Adhesions: preventive strategies.
Eur J Surg Suppl.
1997;
579
32-39
- 48
McLeod R.
Does Seprafilm really reduce adhesive small bowel obstructions?.
Dis Colon Rectum.
2006;
49
1234
- 49
diZerega G S, Verco S J, Young P et al..
A randomized, controlled pilot study of the safety and efficacy of 4% icodextrin solution
in the reduction of adhesions following laparoscopic gynaecological surgery.
Hum Reprod.
2002;
17
1031-1038
- 50
Tingstedt B, Isaksson K, Andersson E, Andersson R.
Prevention of abdominal adhesions–present state and what's beyond the horizon?.
Eur Surg Res.
2007;
39
259-268
- 51
Gervin A S, Puckett C L, Silver D.
Serosal hypofibrinolysis. A cause of postoperative adhesions.
Am J Surg.
1973;
125
80-88
- 52
Rivkind A I, Lieberman N, Durst A L.
Urokinase does not prevent abdominal adhesion formation in rats.
Eur Surg Res.
1985;
17
254-258
- 53
Jansen R P.
Failure of peritoneal irrigation with heparin during pelvic operations upon young
women to reduce adhesions.
Surg Gynecol Obstet.
1988;
166
154-160
- 54
Evans D M, McAree K, Guyton D P, Hawkins N, Stakleff K.
Dose dependency and wound healing aspects of the use of tissue plasminogen activator
in the prevention of intra-abdominal adhesions.
Am J Surg.
1993;
165
229-232
- 55
Chang M M, Leeman S E.
Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization
as substance P.
J Biol Chem.
1970;
245
4784-4790
- 56
Schaffer M, Beiter T, Becker H D, Hunt T K.
Neuropeptides: mediators of inflammation and tissue repair?.
Arch Surg.
1998;
133
1107-1116
- 57
Koon H W, Pothoulakis C.
Immunomodulatory properties of substance P: the gastrointestinal system as a model.
Ann N Y Acad Sci.
2006;
1088
23-40
- 58
Sanfilippo J S, Williams R S, Yussman M A, Cook C L, Bissonnette F.
Substance P in peritoneal fluid.
Am J Obstet Gynecol.
1992;
166
155-159
- 59
Reed K L, Fruin A B, Bishop-Bartolomei K K et al..
Neurokinin-1 receptor and substance P messenger RNA levels increase during intraabdominal
adhesion formation.
J Surg Res.
2002;
108
165-172
- 60
Murphy P G, Hart D A.
Plasminogen activators and plasminogen activator inhibitors in connective tissues
and connective tissue cells: influence of the neuropeptide substance P on expression.
Biochim Biophys Acta.
1993;
1182
205-214
- 61
Newby D E, Wright R A, Labinjoh C et al..
Endothelial dysfunction, impaired endogenous fibrinolysis, and cigarette smoking:
a mechanism for arterial thrombosis and myocardial infarction.
Circulation.
1999;
99
1411-1415
- 62
Ho W Z, Lai J P, Zhu X H, Uvaydova M, Douglas S D.
Human monocytes and macrophages express substance P and neurokinin-1 receptor.
J Immunol.
1997;
159
5654-5660
- 63
Shrikhande S V, Friess H, di Mola F F et al..
NK-1 receptor gene expression is related to pain in chronic pancreatitis.
Pain.
2001;
91
209-217
- 64
Sturiale S, Barbara G, Qiu B et al..
Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P.
Proc Natl Acad Sci U S A.
1999;
96
11653-11658
- 65
Cohen P A, Aarons C B, Gower A C et al..
The effectiveness of a single intraperitoneal infusion of a neurokinin-1 receptor
antagonist in reducing postoperative adhesion formation is time dependent.
Surgery.
2007;
141
368-375
- 66
Reed K L, Fruin A B, Gower A C et al..
A neurokinin 1 receptor antagonist decreases postoperative peritoneal adhesion formation
and increases peritoneal fibrinolytic activity.
Proc Natl Acad Sci U S A.
2004;
101
9115-9120
- 67
Buckenmaier III C C, Pusateri A E, Harris R A, Hetz S P.
Comparison of antiadhesive treatments using an objective rat model.
Am Surg.
1999;
65
274-282
- 68
Khaitan E, Scholz S, Richards W O.
Laparoscopic adhesiolysis and placement of Seprafilm: a new technique and novel approach
to patients with intractable abdominal pain.
J Laparoendosc Adv Surg Tech A.
2002;
12
241-247
- 69
Prushik S G, Aarons C B, Matteotti R et al..
A neurokinin 1 receptor antagonist decreases adhesion reformation after laparoscopic
lysis of adhesions in a rat model of adhesion formation.
Surg Endosc.
2007;
21
1790-1795
- 70
Bruni F, Pasqui A L, Pastorelli M et al..
Effect of atorvastatin on different fibrinolyis mechanisms in hypercholesterolemic
subjects.
Int J Cardiol.
2004;
95
269-274
- 71
Haslinger B, Goedde M F, Toet K H, Kooistra T.
Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells
independent of cholesterol lowering.
Kidney Int.
2002;
62
1611-1619
- 72
Rosenson R S.
Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities.
Atherosclerosis.
2004;
173
1-12
- 73
Schonbeck U, Libby P.
Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory
agents?.
Circulation.
2004;
109
II18-II26
- 74
Wolfrum S, Jensen K S, Liao J K.
Endothelium-dependent effects of statins.
Arterioscler Thromb Vasc Biol.
2003;
23
729-736
- 75
Haslinger B, Kleemann R, Toet K H, Kooistra T.
Simvastatin suppresses tissue factor expression and increases fibrinolytic activity
in tumor necrosis factor-alpha- activated human peritoneal mesothelial cells.
Kidney Int.
2003;
63
2065-2074
- 76
Aarons C B, Cohen P A, Gower A et al..
Statins (HMG-CoA reductase inhibitors) decrease postoperative adhesions by increasing
peritoneal fibrinolytic activity.
Ann Surg.
2007;
245
176-184
- 77
Cetin M, Duran B, Demirkoprulu N et al..
Effects of diazeniumdiolates (NONOates) and methylene blue on the reduction of postoperative
adhesion in rats.
Gynecol Obstet Invest.
2004;
57
186-190
- 78
Galili Y, Ben-Abraham R, Rabau M, Klausner J, Kluger Y.
Reduction of surgery-induced peritoneal adhesions by methylene blue.
Am J Surg.
1998;
175
30-32
- 79
Heydrick S J, Reed K L, Cohen P A et al..
Intraperitoneal administraton of methylene blue attenuates oxidative stress, increases
peritoneal fibrinolysis, and inhibits intraabdominal adhesion formation.
J Surg Res.
2007;
143
311-319
- 80
Salaris S C, Babbs C F, Voorhees III W D.
Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential
new drug for the attenuation of ischemia/reperfusion injury.
Biochem Pharmacol.
1991;
42
499-506
- 81
Khan A U, Kasha M.
Direct spectroscopic observation of singlet oxygen emission at 1268 nm excited by
sensitizing dyes of biological interest in liquid solution.
Proc Natl Acad Sci U S A.
1979;
76
6047-6049
- 82
Wolin M S, Cherry P D, Rodenburg J M, Messina E J, Kaley G.
Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine
and nitric oxide via the extracellular generation of superoxide anion.
J Pharmacol Exp Ther.
1990;
254
872-876
- 83
Kalambokis G, Economou M, Fotopoulos A et al..
Effects of nitric oxide inhibition by methylene blue in cirrhotic patients with ascites.
Dig Dis Sci.
2005;
50
1771-1777
- 84
Papadakis K A, Targan S R.
Tumor necrosis factor: biology and therapeutic inhibitors.
Gastroenterology.
2000;
119
1148-1157
- 85
Dinc S, Ozaslan C, Kuru B et al..
Methylene blue prevents surgery-induced peritoneal adhesions but impairs the early
phase of anastomotic wound healing.
Can J Surg.
2006;
49
321-328
- 86
Tarhan O R, Barut I, Sutcu R, Akdeniz Y, Akturk O.
Pentoxifylline, a methyl xanthine derivative, reduces peritoneal adhesions and increases
peritoneal fibrinolysis in rats.
Tohoku J Exp Med.
2006;
209
249-255
- 87
Lai H S, Chen Y.
Effect of octreotide on postoperative intraperitoneal adhesions in rats.
Scand J Gastroenterol.
1996;
31
678-681
- 88
Lai H S, Chen Y, Chang K J, Chen W J.
Effects of octreotide on epidermal growth factor receptor, tissue plasminogen activator,
and plasminogen activator inhibitor during intraperitoneal adhesion formation.
J Gastroenterol.
2003;
38
555-560
- 89
Bae J S, Ahn S J, Yim H, Jang K H, Jin H K.
Prevention of intraperitoneal adhesions and abscesses by polysaccharides isolated
from Phellinus spp in a rat peritonitis model.
Ann Surg.
2005;
241
534-540
- 90
Tarhan O R, Barut I, Sezik M.
An evaluation of normal saline and taurolidine on intra-abdominal adhesion formation
and peritoneal fibrinolysis.
J Surg Res.
2008;
144
151-157
- 91
Segura T, Schmokel H, Hubbell J A.
RNA interference targeting hypoxia inducible factor 1alpha reduces post-operative
adhesions in rats.
J Surg Res.
2007;
141
162-170
- 92
Zhang Q, Wu Y, Chau C H et al..
Crosstalk of hypoxia-mediated signaling pathways in upregulating plasminogen activator
inhibitor-1 expression in keloid fibroblasts.
J Cell Physiol.
2004;
199
89-97
- 93
de la Portilla F, Ynfante I, Bejarano D et al..
Prevention of peritoneal adhesions by intraperitoneal administration of vitamin E:
an experimental study in rats.
Dis Colon Rectum.
2004;
47
2157-2161
- 94
Rijhwani A, Sen S, Gunasekaran S et al..
Allopurinol reduces the severity of peritoneal adhesions in mice.
J Pediatr Surg.
1995;
30
533-537
- 95
Sogutlu G, Karabulut A B, Ara C et al..
The effect of resveratrol on surgery-induced peritoneal adhesions in an experimental
model.
Cell Biochem Funct.
2007;
25
217-220
- 96
ten Raa S, van den Tol M P, Sluiter W et al..
The role of neutrophils and oxygen free radicals in post-operative adhesions.
J Surg Res.
2006;
136
45-52
- 97
Cooper K, Young J, Wadsworth S et al..
Reduction of post-surgical adhesion formation with tranilast.
J Surg Res.
2007;
141
153-161
- 98
Lucas P A, Warejcka D J, Young H E, Lee B Y.
Formation of abdominal adhesions is inhibited by antibodies to transforming growth
factor-beta1.
J Surg Res.
1996;
65
135-138
- 99
Greene A K, Alwayn I P, Nose V et al..
Prevention of intra-abdominal adhesions using the antiangiogenic COX-2 inhibitor celecoxib.
Ann Surg.
2005;
242
140-146
- 100
Attard J A, MacLean A R.
Adhesive small bowel obstruction: epidemiology, biology and prevention.
Can J Surg.
2007;
50
291-300
Karen L ReedPh.D.
Department of Surgery, Boston University School of Medicine
700 Albany Street, W402, Boston, MA 02118
Email: klreed@bu.edu