Semin Reprod Med 2008; 26(4): 331-340
DOI: 10.1055/s-0028-1082391
© Thieme Medical Publishers

Pharmacologic Inhibition of Adhesion Formation and Peritoneal Tissue-Type Plasminogen Activator Activity

Karen L. Reed1 , 3 , Arthur F. Stucchi1 , 3 , James M. Becker2 , 3
  • 1Associate Research Professor
  • 2James Utley Professor and Chairman
  • 3Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
Further Information

Publication History

Publication Date:
28 August 2008 (online)

ABSTRACT

Intraperitoneal adhesions remain a costly, long-term sequela of abdominal surgery. They cause significant postoperative morbidity and difficult reoperative surgery. Although adhesions have been recognized for more than 250 years, a uniformly effective method of adhesion prevention does not exist. In recent years, research has become more focused on understanding the biochemical and cellular processes involved in adhesion formation—a necessary step in the development of safe and effective means of adhesion prevention. Studies suggest that events critical to adhesion outcome begin within hours of an abdominal operation with the balance between fibrin deposition and degradation being of central importance. A pharmacologic agent administered at the time of surgery that could tip the fibrinolytic balance in favor of fibrin degradation without interfering with postoperative wound healing would be an ideal candidate in the prevention of adhesion formation. Further research into the molecular and cellular events that underlie adhesion formation is essential and undoubtedly will lead to successful adhesion prevention.

REFERENCES

  • 1 Becker J M, Dayton M T, Fazio V W et al.. Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: a prospective, randomized, double-blind multicenter study.  J Am Coll Surg. 1996;  183 297-306
  • 2 van Goor H. Consequences and complications of peritoneal adhesions.  Colorectal Dis. 2007;  9 25-34
  • 3 Liakakos T, Thomakos N, Fine P M, Dervenis C, Young R L. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Recent advances in prevention and management.  Dig Surg. 2001;  18 260-273
  • 4 Wiseman D M. Adhesion related disease - adhesion related deaths. 2003. http://Available at: www.adhesions.org/pt4magnitude.htm Accessed November 1, 2007
  • 5 Kossi J, Salminen P, Rantala A, Laato M. Population-based study of the surgical workload and economic impact of bowel obstruction caused by postoperative adhesions.  Br J Surg. 2003;  90 1441-1444
  • 6 Ivarsson M L, Holmdahl L, Franzen G, Risberg B. Cost of bowel obstruction resulting from adhesions.  Eur J Surg. 1997;  163 679-684
  • 7 Wilson M S. Practicalities and costs of adhesions.  Colorectal Dis. 2007;  9 60-65
  • 8 van der Wal J B, Jeekel J. Biology of the peritoneum in normal homeostasis and after surgical trauma.  Colorectal Dis. 2007;  9 9-13
  • 9 Arici A, Tazuke S I, Attar E, Kliman H J, Olive D L. Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells.  Mol Hum Reprod. 1996;  2 40-45
  • 10 Liberek T, Topley N, Luttmann W, Williams J D. Adherence of neutrophils to human peritoneal mesothelial cells: role of intercellular adhesion molecule-1.  J Am Soc Nephrol. 1996;  7 208-217
  • 11 Offner F A, Obrist P, Stadlmann S et al.. IL-6 secretion by human peritoneal mesothelial and ovarian cancer cells.  Cytokine. 1995;  7 542-547
  • 12 Bachus K E, Doty E, Haney A F, Weinberg J B. Differential effects of interleukin-1 alpha, tumor necrosis factor-alpha, indomethacin, hydrocortisone, and macrophage co-culture on the proliferation of human fibroblasts and peritoneal mesothelial cells.  J Soc Gynecol Investig. 1995;  2 636-642
  • 13 Drollette C M, Badawy S Z. Pathophysiology of pelvic adhesions. Modern trends in preventing infertility.  J Reprod Med. 1992;  37 107-121
  • 14 Rodgers K E, diZerega G S. Function of peritoneal exudate cells after abdominal surgery.  J Invest Surg. 1993;  6 9-23
  • 15 diZerega G S. Peritoneum, peritoneal healing, and adhesion formation. In: diZerega GS Peritoneal Surgery. New York, NY; Springer-Verlag 2000: 3-37
  • 16 Cheong Y C, Laird S M, Li T C et al.. Peritoneal healing and adhesion formation/reformation.  Hum Reprod Update. 2001;  7 556-566
  • 17 Thompson J. Pathogenesis and prevention of adhesion formation.  Dig Surg. 1998;  15 153-157
  • 18 Ghellai A M, Stucchi A F, Chegini N et al.. Role of transforming growth factor beta-1 in peritonitis-induced adhesions.  J Gastrointest Surg. 2000;  4 316-323
  • 19 Holmdahl L, Kotseos K, Bergstrom M et al.. Overproduction of transforming growth factor-beta1 (TGF-beta1) is associated with adhesion formation and peritoneal fibrinolytic impairment.  Surgery. 2001;  129 626-632
  • 20 Thompson J. Peritoneal fibrinolysis and adhesion formation. In: diZerega GS Peritoneal Surgery. New York, NY; Springer-Verlag 2000: 133-142
  • 21 diZerega G S, Campeau J D. Peritoneal repair and post-surgical adhesion formation.  Hum Reprod Update. 2001;  7 547-555
  • 22 Monk B J, Berman M L, Montz F J. Adhesions after extensive gynecologic surgery: clinical significance, etiology, and prevention.  Am J Obstet Gynecol. 1994;  170 1396-1403
  • 23 Tulandi T, Chen M F, Al-Took S, Watkin K. A study of nerve fibers and histopathology of postsurgical, postinfectious, and endometriosis-related adhesions.  Obstet Gynecol. 1998;  92 766-768
  • 24 Herrick S E, Mutsaers S E, Ozua P et al.. Human peritoneal adhesions are highly cellular, innervated, and vascularized.  J Pathol. 2000;  192 67-72
  • 25 Sulaiman H, Gabella G, Davis M C et al.. Presence and distribution of sensory nerve fibers in human peritoneal adhesions.  Ann Surg. 2001;  234 256-261
  • 26 Holmdahl L. The role of fibrinolysis in adhesion formation.  Eur J Surg Suppl. 1997;  579 24-31
  • 27 Holmdahl L. Mechanisms of adhesion development and effects on wound healing.  Eur J Surg Suppl. 1997;  579 7-9
  • 28 Holmdahl L, Falkenberg M, Ivarsson M L, Risberg B. Plasminogen activators and inhibitors in peritoneal tissue.  APMIS. 1997;  105 25-30
  • 29 Holmdahl L, Eriksson E, al-Jabreen M, Risberg B. Fibrinolysis in human peritoneum during operation.  Surgery. 1996;  119 701-705
  • 30 Holmdahl L, Eriksson E, Eriksson B I, Risberg B. Depression of peritoneal fibrinolysis during operation is a local response to trauma.  Surgery. 1998;  123 539-544
  • 31 Doody K J, Dunn R C, Buttram Jr V C. Recombinant tissue plasminogen activator reduces adhesion formation in a rabbit uterine horn model.  Fertil Steril. 1989;  51 509-512
  • 32 Dorr P J, Vemer H M, Brommer E J et al.. Prevention of postoperative adhesions by tissue-type plasminogen activator (t-PA) in the rabbit.  Eur J Obstet Gynecol Reprod Biol. 1990;  37 287-291
  • 33 Menzies D, Ellis H. The role of plasminogen activator in adhesion prevention.  Surg Gynecol Obstet. 1991;  172 362-366
  • 34 Orita H, Fukasawa M, Girgis W, diZerega G S. Inhibition of postsurgical adhesions in a standardized rabbit model: intraperitoneal treatment with tissue plasminogen activator.  Int J Fertil. 1991;  36 172-177
  • 35 Dunn R C, Mohler M. Effect of varying days of tissue plasminogen activator therapy on the prevention of postsurgical adhesions in a rabbit model.  J Surg Res. 1993;  54 242-245
  • 36 Falk K, Bjorquist P, Stromqvist M, Holmdahl L. Reduction of experimental adhesion formation by inhibition of plasminogen activator inhibitor type 1.  Br J Surg. 2001;  88 286-289
  • 37 Sulaiman H, Dawson L, Laurent G J, Bellingan G J, Herrick S E. Role of plasminogen activators in peritoneal adhesion formation.  Biochem Soc Trans. 2002;  30 126-131
  • 38 Saed G M, Diamond M P. Modulation of the expression of tissue plasminogen activator and its inhibitor by hypoxia in human peritoneal and adhesion fibroblasts.  Fertil Steril. 2003;  79 164-168
  • 39 van Hinsbergh V W, Kooistra T, Scheffer M A, Hajo van Bockel J, van Muijen G N. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells.  Blood. 1990;  75 1490-1497
  • 40 Rougier J P, Guia S, Hagege J, Nguyen G, Ronco P M. PAI-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures: transcriptional regulation by TGF-beta 1.  Kidney Int. 1998;  54 87-98
  • 41 Bittinger F, Schepp C, Brochhausen C et al.. Remodeling of peritoneal-like structures by mesothelial cells: its role in peritoneal healing.  J Surg Res. 1999;  82 28-33
  • 42 Saed G M, Zhang W, Chegini N, Holmdahl L, Diamond M P. Alteration of type I and III collagen expression in human peritoneal mesothelial cells in response to hypoxia and transforming growth factor-beta1.  Wound Repair Regen. 1999;  7 504-510
  • 43 Martin J, Yung S, Robson R L, Steadman R, Davies M. Production and regulation of matrix metalloproteinases and their inhibitors by human peritoneal mesothelial cells.  Perit Dial Int. 2000;  20 524-533
  • 44 Ha H, Cha M K, Choi H N, Lee H B. Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells.  Perit Dial Int. 2002;  22 171-177
  • 45 Sitter T, Toet K, Fricke H et al.. Modulation of procoagulant and fibrinolytic system components of mesothelial cells by inflammatory mediators.  Am J Physiol. 1996;  271 R1256-R1263
  • 46 Haney A F, Hesla J, Hurst B S et al.. Expanded polytetrafluoroethylene (Gore-Tex Surgical Membrane) is superior to oxidized regenerated cellulose (Interceed TC7 + ) in preventing adhesions.  Fertil Steril. 1995;  63 1021-1026
  • 47 Risberg B. Adhesions: preventive strategies.  Eur J Surg Suppl. 1997;  579 32-39
  • 48 McLeod R. Does Seprafilm really reduce adhesive small bowel obstructions?.  Dis Colon Rectum. 2006;  49 1234
  • 49 diZerega G S, Verco S J, Young P et al.. A randomized, controlled pilot study of the safety and efficacy of 4% icodextrin solution in the reduction of adhesions following laparoscopic gynaecological surgery.  Hum Reprod. 2002;  17 1031-1038
  • 50 Tingstedt B, Isaksson K, Andersson E, Andersson R. Prevention of abdominal adhesions–present state and what's beyond the horizon?.  Eur Surg Res. 2007;  39 259-268
  • 51 Gervin A S, Puckett C L, Silver D. Serosal hypofibrinolysis. A cause of postoperative adhesions.  Am J Surg. 1973;  125 80-88
  • 52 Rivkind A I, Lieberman N, Durst A L. Urokinase does not prevent abdominal adhesion formation in rats.  Eur Surg Res. 1985;  17 254-258
  • 53 Jansen R P. Failure of peritoneal irrigation with heparin during pelvic operations upon young women to reduce adhesions.  Surg Gynecol Obstet. 1988;  166 154-160
  • 54 Evans D M, McAree K, Guyton D P, Hawkins N, Stakleff K. Dose dependency and wound healing aspects of the use of tissue plasminogen activator in the prevention of intra-abdominal adhesions.  Am J Surg. 1993;  165 229-232
  • 55 Chang M M, Leeman S E. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P.  J Biol Chem. 1970;  245 4784-4790
  • 56 Schaffer M, Beiter T, Becker H D, Hunt T K. Neuropeptides: mediators of inflammation and tissue repair?.  Arch Surg. 1998;  133 1107-1116
  • 57 Koon H W, Pothoulakis C. Immunomodulatory properties of substance P: the gastrointestinal system as a model.  Ann N Y Acad Sci. 2006;  1088 23-40
  • 58 Sanfilippo J S, Williams R S, Yussman M A, Cook C L, Bissonnette F. Substance P in peritoneal fluid.  Am J Obstet Gynecol. 1992;  166 155-159
  • 59 Reed K L, Fruin A B, Bishop-Bartolomei K K et al.. Neurokinin-1 receptor and substance P messenger RNA levels increase during intraabdominal adhesion formation.  J Surg Res. 2002;  108 165-172
  • 60 Murphy P G, Hart D A. Plasminogen activators and plasminogen activator inhibitors in connective tissues and connective tissue cells: influence of the neuropeptide substance P on expression.  Biochim Biophys Acta. 1993;  1182 205-214
  • 61 Newby D E, Wright R A, Labinjoh C et al.. Endothelial dysfunction, impaired endogenous fibrinolysis, and cigarette smoking: a mechanism for arterial thrombosis and myocardial infarction.  Circulation. 1999;  99 1411-1415
  • 62 Ho W Z, Lai J P, Zhu X H, Uvaydova M, Douglas S D. Human monocytes and macrophages express substance P and neurokinin-1 receptor.  J Immunol. 1997;  159 5654-5660
  • 63 Shrikhande S V, Friess H, di Mola F F et al.. NK-1 receptor gene expression is related to pain in chronic pancreatitis.  Pain. 2001;  91 209-217
  • 64 Sturiale S, Barbara G, Qiu B et al.. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P.  Proc Natl Acad Sci U S A. 1999;  96 11653-11658
  • 65 Cohen P A, Aarons C B, Gower A C et al.. The effectiveness of a single intraperitoneal infusion of a neurokinin-1 receptor antagonist in reducing postoperative adhesion formation is time dependent.  Surgery. 2007;  141 368-375
  • 66 Reed K L, Fruin A B, Gower A C et al.. A neurokinin 1 receptor antagonist decreases postoperative peritoneal adhesion formation and increases peritoneal fibrinolytic activity.  Proc Natl Acad Sci U S A. 2004;  101 9115-9120
  • 67 Buckenmaier III C C, Pusateri A E, Harris R A, Hetz S P. Comparison of antiadhesive treatments using an objective rat model.  Am Surg. 1999;  65 274-282
  • 68 Khaitan E, Scholz S, Richards W O. Laparoscopic adhesiolysis and placement of Seprafilm: a new technique and novel approach to patients with intractable abdominal pain.  J Laparoendosc Adv Surg Tech A. 2002;  12 241-247
  • 69 Prushik S G, Aarons C B, Matteotti R et al.. A neurokinin 1 receptor antagonist decreases adhesion reformation after laparoscopic lysis of adhesions in a rat model of adhesion formation.  Surg Endosc. 2007;  21 1790-1795
  • 70 Bruni F, Pasqui A L, Pastorelli M et al.. Effect of atorvastatin on different fibrinolyis mechanisms in hypercholesterolemic subjects.  Int J Cardiol. 2004;  95 269-274
  • 71 Haslinger B, Goedde M F, Toet K H, Kooistra T. Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells independent of cholesterol lowering.  Kidney Int. 2002;  62 1611-1619
  • 72 Rosenson R S. Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities.  Atherosclerosis. 2004;  173 1-12
  • 73 Schonbeck U, Libby P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents?.  Circulation. 2004;  109 II18-II26
  • 74 Wolfrum S, Jensen K S, Liao J K. Endothelium-dependent effects of statins.  Arterioscler Thromb Vasc Biol. 2003;  23 729-736
  • 75 Haslinger B, Kleemann R, Toet K H, Kooistra T. Simvastatin suppresses tissue factor expression and increases fibrinolytic activity in tumor necrosis factor-alpha- activated human peritoneal mesothelial cells.  Kidney Int. 2003;  63 2065-2074
  • 76 Aarons C B, Cohen P A, Gower A et al.. Statins (HMG-CoA reductase inhibitors) decrease postoperative adhesions by increasing peritoneal fibrinolytic activity.  Ann Surg. 2007;  245 176-184
  • 77 Cetin M, Duran B, Demirkoprulu N et al.. Effects of diazeniumdiolates (NONOates) and methylene blue on the reduction of postoperative adhesion in rats.  Gynecol Obstet Invest. 2004;  57 186-190
  • 78 Galili Y, Ben-Abraham R, Rabau M, Klausner J, Kluger Y. Reduction of surgery-induced peritoneal adhesions by methylene blue.  Am J Surg. 1998;  175 30-32
  • 79 Heydrick S J, Reed K L, Cohen P A et al.. Intraperitoneal administraton of methylene blue attenuates oxidative stress, increases peritoneal fibrinolysis, and inhibits intraabdominal adhesion formation.  J Surg Res. 2007;  143 311-319
  • 80 Salaris S C, Babbs C F, Voorhees III W D. Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury.  Biochem Pharmacol. 1991;  42 499-506
  • 81 Khan A U, Kasha M. Direct spectroscopic observation of singlet oxygen emission at 1268 nm excited by sensitizing dyes of biological interest in liquid solution.  Proc Natl Acad Sci U S A. 1979;  76 6047-6049
  • 82 Wolin M S, Cherry P D, Rodenburg J M, Messina E J, Kaley G. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion.  J Pharmacol Exp Ther. 1990;  254 872-876
  • 83 Kalambokis G, Economou M, Fotopoulos A et al.. Effects of nitric oxide inhibition by methylene blue in cirrhotic patients with ascites.  Dig Dis Sci. 2005;  50 1771-1777
  • 84 Papadakis K A, Targan S R. Tumor necrosis factor: biology and therapeutic inhibitors.  Gastroenterology. 2000;  119 1148-1157
  • 85 Dinc S, Ozaslan C, Kuru B et al.. Methylene blue prevents surgery-induced peritoneal adhesions but impairs the early phase of anastomotic wound healing.  Can J Surg. 2006;  49 321-328
  • 86 Tarhan O R, Barut I, Sutcu R, Akdeniz Y, Akturk O. Pentoxifylline, a methyl xanthine derivative, reduces peritoneal adhesions and increases peritoneal fibrinolysis in rats.  Tohoku J Exp Med. 2006;  209 249-255
  • 87 Lai H S, Chen Y. Effect of octreotide on postoperative intraperitoneal adhesions in rats.  Scand J Gastroenterol. 1996;  31 678-681
  • 88 Lai H S, Chen Y, Chang K J, Chen W J. Effects of octreotide on epidermal growth factor receptor, tissue plasminogen activator, and plasminogen activator inhibitor during intraperitoneal adhesion formation.  J Gastroenterol. 2003;  38 555-560
  • 89 Bae J S, Ahn S J, Yim H, Jang K H, Jin H K. Prevention of intraperitoneal adhesions and abscesses by polysaccharides isolated from Phellinus spp in a rat peritonitis model.  Ann Surg. 2005;  241 534-540
  • 90 Tarhan O R, Barut I, Sezik M. An evaluation of normal saline and taurolidine on intra-abdominal adhesion formation and peritoneal fibrinolysis.  J Surg Res. 2008;  144 151-157
  • 91 Segura T, Schmokel H, Hubbell J A. RNA interference targeting hypoxia inducible factor 1alpha reduces post-operative adhesions in rats.  J Surg Res. 2007;  141 162-170
  • 92 Zhang Q, Wu Y, Chau C H et al.. Crosstalk of hypoxia-mediated signaling pathways in upregulating plasminogen activator inhibitor-1 expression in keloid fibroblasts.  J Cell Physiol. 2004;  199 89-97
  • 93 de la Portilla F, Ynfante I, Bejarano D et al.. Prevention of peritoneal adhesions by intraperitoneal administration of vitamin E: an experimental study in rats.  Dis Colon Rectum. 2004;  47 2157-2161
  • 94 Rijhwani A, Sen S, Gunasekaran S et al.. Allopurinol reduces the severity of peritoneal adhesions in mice.  J Pediatr Surg. 1995;  30 533-537
  • 95 Sogutlu G, Karabulut A B, Ara C et al.. The effect of resveratrol on surgery-induced peritoneal adhesions in an experimental model.  Cell Biochem Funct. 2007;  25 217-220
  • 96 ten Raa S, van den Tol M P, Sluiter W et al.. The role of neutrophils and oxygen free radicals in post-operative adhesions.  J Surg Res. 2006;  136 45-52
  • 97 Cooper K, Young J, Wadsworth S et al.. Reduction of post-surgical adhesion formation with tranilast.  J Surg Res. 2007;  141 153-161
  • 98 Lucas P A, Warejcka D J, Young H E, Lee B Y. Formation of abdominal adhesions is inhibited by antibodies to transforming growth factor-beta1.  J Surg Res. 1996;  65 135-138
  • 99 Greene A K, Alwayn I P, Nose V et al.. Prevention of intra-abdominal adhesions using the antiangiogenic COX-2 inhibitor celecoxib.  Ann Surg. 2005;  242 140-146
  • 100 Attard J A, MacLean A R. Adhesive small bowel obstruction: epidemiology, biology and prevention.  Can J Surg. 2007;  50 291-300

Karen L ReedPh.D. 

Department of Surgery, Boston University School of Medicine

700 Albany Street, W402, Boston, MA 02118

Email: klreed@bu.edu

    >