Semin Speech Lang 2008; 29(3): 226-238
DOI: 10.1055/s-0028-1082886
© Thieme Medical Publishers

The Neural Organization of Spatial Thought and Language

Anjan Chatterjee1
  • 1Department of Psychology, University of Iowa, Iowa City, Iowa
Further Information

Publication History

Publication Date:
21 August 2008 (online)

ABSTRACT

The cognitive neuroscience of semantics has focused largely on object knowledge. By contrast, spatial semantics, especially as related to language, has received little attention. Spatial thought and language gives our semantic system a rich texture by introducing relational thinking and greater levels of abstraction than is evoked by object semantics. This article describes the neural instantiation of spatial thought and language based on imaging and lesion studies. We underscore two functional-anatomical organizational principles. First, perceptual and conceptual representations have a parallel organizational structure within the nervous system. Lateral temporal cortices are important for manners of motion, action representations, and action verbs. More dorsal regions are important for paths of motion, locative representations, and prepositions. Second, posterior perceptual representations serve as points of entry for more anterior and centripetally located peri-Sylvian conceptual and linguistic representations.

REFERENCES

  • 1 Landau B, Jackendoff R. “What” and “where” in spatial language and spatial cognition.  Behav Brain Sci. 1993;  16 217-265
  • 2 Tanenhaus M K, Spivey-Knowlton M J, Eberhard K M, Sedivy J C. Integration of visual and linguistic information in spoken language comprehension.  Science. 1995;  268 1632-1634
  • 3 Stanfield R A, Zwaan R A. The effect of implied orientation derived from verbal context on picture recognition.  Psychol Sci. 2001;  12 153-156
  • 4 Papafragou A, Massey C, Gleitman L. Shake, rattle, ‘n’ roll: the representation of motion in language and cognition.  Cognition. 2002;  84 189-212
  • 5 Talmy L. How language structures space. In: Pick H, Acredolo L Spatial Orientation: Theory, Research and Application. New York, NY; Plenum Press 1983
  • 6 Jackendoff R. Parts and boundaries.  Cognition. 1991;  41 9-45
  • 7 Hayward W G, Tarr M J. Spatial language and spatial representation.  Cognition. 1995;  55 39-84
  • 8 Talmy L. Towards a cognitive semantics: Concept structuring systems. Cambridge, MA; MIT Press 2000
  • 9 Chatterjee A. Language and space: some interactions.  Trends Cogn Sci. 2001;  5 55-61
  • 10 Jackendoff R. On beyond zebra: the relation of linguistic and visual information.  Cognition. 1987;  26 89-114
  • 11 Jackendoff R. The architecture of the linguistic-spatial interface. In: Bloom P, Peterson MA, Nadel L, Garrett MF Language and Space. Cambridge, MA; MIT Press 1996: 1-30
  • 12 Jackendoff R. Semantic Structures. Cambridge, MA; MIT Press 1990
  • 13 Regier T. A model of human capacity for categorizing spatial relations.  Cogn Linguist. 1995;  6 63-88
  • 14 Mandler J M. The Foundations of Mind: Origins of Conceptual Thought. New York, NY; Oxford University Press 2004
  • 15 Gennari S P, Sloman S A, Malt B C, Fitch W. Motion events in language and cognition.  Cognition. 2002;  83 49-79
  • 16 Slobin D. From “thought and language” to “thinking for speaking”. In: Gumperz J, Levinsohn S Rethinking Linguistic Relativity. New York, NY; Cambridge University Press 1996: 70-96
  • 17 Slobin D. Verbalized events. In: Niemeier S, Dirven R Evidence for Linguistic Relativity. Amsterdam/Philadelphia; John Benjamins 2000: 107-138
  • 18 Kemmerer D. “Near” and “far” in language and perception.  Cognition. 1999;  73 35-63
  • 19 Damasio A R, Damasio H, Tranel D, Brandt J P. Neural regionalization of knowledge access: preliminary evidence.  Cold Spring Harb Symp Quant Biol. 1990;  55 1039-1047
  • 20 Tranel D, Damasio A R. The neurobiology of knowledge retrieval.  Behav Brain Sci. 1999;  22 303
  • 21 Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak R. Functional anatomy of a common semantic system for words and pictures.  Nature. 1996;  383 254-256
  • 22 Binder J R, Frost J A, Hammeke T A, Cox R W, Rao S M, Prieto T. Human brain language areas identified by functional magnetic resonance imaging.  J Neurosci. 1997;  17 353-362
  • 23 Capitani E, Laiacona M, Barbarotto R, Trivelli C. Living and non-living categories. Is there a “normal” asymmetry?.  Neuropsychologia. 1994;  32 1453-1463
  • 24 Tranel D, Logan C G, Frank R J, Damasio A R. Explaining category-related effects in the retrieval of conceptual and lexical knowledge for concrete entities: operationalization and analysis of factors.  Neuropsychologia. 1997;  35 1329-1339
  • 25 Gonnerman L M, Andersen E S, Devlin J T, Kempler D, Seidenberg M S. Double dissociation of semantic categories in Alzheimer's disease.  Brain Lang. 1997;  57 254-279
  • 26 Caramazza A, Shelton J. Domain-specific knowledge systems in the brain: the animate-inanimate distinction.  J Cogn Neurosci. 1998;  10 1-34
  • 27 Borgo F S, Shallice T. When living things and other 'sensory quality' categories behave in the same fashion: a novel category specificity effect.  Neurocase. 2001;  7 201-220
  • 28 Moore C J, Price C J. A functional neuroimaging study of the variables that generate category-specific object processing differences.  Brain. 1999;  122 943-962
  • 29 Kersten A W. A division of labor between nouns and verbs in the representation of motion.  J Exp Psychol Gen. 1998;  127 34-54
  • 30 Kersten A W, Smith L B. Attention to novel objects during verb learning.  Child Dev. 2002;  73 93-109
  • 31 Carlson-Radvansky L A, Irwin D E. Frames of reference in vision and language: where is above?.  Cognition. 1993;  46 223-244
  • 32 Feldman J A. Four frames suffice: a provisional model of vision and space.  Behav Brain Sci. 1985;  8 265-289
  • 33 Marr D. Vision. A Computational Investigation into the Human Representation and Processing of Visual Information. New York, NY; WH Freeman 1982: 397
  • 34 Chatterjee A. Picturing unilateral spatial neglect: viewer versus object centred reference frames.  J Neurol Neurosurg Psychiatry. 1994;  57 1236-1240
  • 35 Behrmann M, Plaut D C. The interaction of spatial reference frames and hierarchical object representations: evidence from figure copying in hemispatial neglect.  Cogn Affect Behav Neurosci. 2001;  1 307-329
  • 36 Andersen R A, Essick G K, Siegel R M. Encoding of spatial locations by posterior parietal neurons.  Science. 1985;  230 456-458
  • 37 Andersen R A. Coordinate transformation and motor planning in parietal cortex. In: Gazzaniga MS The Cognitive Neurosciences. Boston, MA; MIT Press 1995: 519-532
  • 38 Colby C L. Action oriented spatial reference frames in cortex.  Neuron. 1998;  20 15-24
  • 39 Graziano M S. Neuroscience. Awareness of space.  Nature. 2001;  411 903-904
  • 40 Gross C G, Graziano M SA. Multiple representations of space in the brain.  Neuroscientist. 1995;  1 43-50
  • 41 Benton A. Visuoperceptive, visuospatial and visuoconstructive disorders. In: Heilman K, Valenstein E Clinical Neuropsychology. New York, NY; Oxford University Press 1985: 151-185
  • 42 Shipley T, Zacks J. Understanding Events: From Perception to Action. New York, NY; Oxford University Press 2008
  • 43 Gentner D. Why we're so smart. In: Gentner D, Goldin-Meadows S Language in Mind. Cambridge, MA; MIT Press 2003: 195-235
  • 44 Martin A, Ungerleider L, Haxby J. The sensory/motor model of semantic representation of objects. In: Gazzaniga M The New Cognitive Neurosciences. 2nd ed. Cambridge, MA; MIT Press 2000: 1023-1036
  • 45 Ungerleider L G, Mishkin M. Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW Analysis of Visual Behavior. Cambridge, MA; MIT Press 1982: 549-586
  • 46 Schiller P H. On the specificity of neurons and visual areas.  Behav Brain Res. 1996;  76 21-35
  • 47 Ferrera V P, Rudolph K K, Maunsell J HR. Responses of neurons in the parietal and temporal visual pathways during a motion task.  J Neurosci. 1994;  14 6171-6186
  • 48 Farah M J. Visual Agnosia. Cambridge, MA; MIT Press 1990
  • 49 Aguirre G K, D'Esposito M. Environmental knowledge is subserved by separable dorsal/ventral neural areas.  J Neurosci. 1997;  17 2512-2518
  • 50 Chatterjee A. Neglect. A disorder of spatial attention. In: D'Esposito M Neurological Foundations of Cognitive Neuroscience. Cambridge, MA; MIT Press 2003: 1-26
  • 51 Watson J DG, Myers R, Frackowiak R SJ et al.. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging.  Cereb Cortex. 1993;  3 79-94
  • 52 Beauchamp M S, Cox R W, DeYoe E A. Graded affects of spatial and featural attention on human area MT and associated motion processing areas.  J Neurophysiol. 1997;  78 516-520
  • 53 Tootell R B, Reppas J B, Kwong K K et al.. Functional analysis of human MT and relating visual cortical areas using magnetic resonance imaging.  J Neurosci. 1995;  15 3215-3230
  • 54 Treue S, Trujillo J. Feature-based attention influences motion processing gain in macaque visual cortex.  Nature. 1999;  399 575-579
  • 55 Oram M W, Perrett D I. Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli.  J Cogn Neurosci. 1994;  6 99-116
  • 56 Grezes J, Fonlupt P, Bertenthal B, Chantal D-M, Segebarth C, Decety J. Does perception of biological motion rely on specific brain regions?.  Neuroimage. 2001;  13 775-785
  • 57 Grossman E D, Blake R. Brain areas active during visual perception of biological motion.  Neuron. 2002;  35 1167-1175
  • 58 Martin A, Weisberg J. Neural foundations for understanding social and mechanical concepts.  Cogn Neuropsychol. 2003;  20 575-587
  • 59 Talmy L. Lexicalization patterns: semantic structure in lexical forms. In: Shopen T Language Typology and Syntactic Description. New York, NY; Cambridge University Press 1985: 57-149
  • 60 Wu D H, Morganti A, Chatterjee A. Neural substrates of processing path and manner information of a moving event.  Neuropsychologia. 2008;  46 704-713
  • 61 Kable J W, Spellmeyer-Lease J, Chatterjee A. Neural substrates of action event knowledge.  J Cogn Neurosci. 2002;  14 795-804
  • 62 Martin A, Haxby J V, Lalonde F M, Wiggs C L, Ungerleider L G. Discrete cortical regions associated with knowledge of color and knowledge of action.  Science. 1995;  270 102-105
  • 63 Decety J, Grezes J, Costes N et al.. Brain activity during observation of actions. Influence of action content and subject strategy.  Brain. 1997;  120 1763-1777
  • 64 Ochipa C, Rothi L, Heilman K. Conceptual apraxia in Alzheimer's disease.  Brain. 1992;  115 1061-1071
  • 65 Heilman K, Gonzalez-Rothi L. Apraxia. In: Heilman K, Valenstein E Clinical Neuropsychology. New York, NY; Oxford University Press 1993: 141-163
  • 66 Hazeltine E, Grafton S T, Ivry R. Attention and stimulus characteristics determine the locus of motor-sequence encoding: a PET study.  Brain. 1997;  120 123-140
  • 67 Grafton S T, Fagg A H, Arbib M A. Dorsal premotor cortex and conditional movement selection: a PET functional mapping study.  J Neurophysiol. 1998;  79 1092-1097
  • 68 Wolpert D M, Ghahramani Z, Flanagan J R. Perspectives and problems in motor learning.  Trends Cogn Sci. 2001;  5 487-494
  • 69 Frith C D, Blakemore S J, Wolpert D M. Abnormalities in the awareness and control of action.  Philos Trans R Soc Lond B Biol Sci. 2000;  355 1771-1788
  • 70 Handy T C, Grafton S T, Schroff N M, Ketay S, Gazzaniga M. Graspable objects grab attention when the potential for action is recognized.  Nat Neurosci. 2003;  6 421-427
  • 71 Chainay H, Humphreys G U. Neuropsychological evidence for a convergent model of action.  Cogn Neuropsychol. 2002;  19 67-93
  • 72 Kable J W, Chatterjee A. The specificity of action representations in lateral occipitotemporal cortex.  J Cogn Neurosci. 2006;  18 1498-1517
  • 73 Grill-Spector K, Malach R. fMRI adaptation: a tool for studying the functional properties of human cortical neurons.  Acta Psychol (Amst). 2001;  107 293-321
  • 74 Downing P E, Jiang Y, Shuman M, Kanwisher N. A cortical area selective for visual processing of the human body.  Science. 2001;  293 2470-2473
  • 75 Malach R, Reppas J, Benson R et al.. Object related activity revealed by functional magnetic resonance imaging in human occipital cortex.  Proc Natl Acad Sci U S A. 1995;  92 8135-8139
  • 76 Kanwisher N, Woods R P, Iacoboni M, Mazziotta J C. A locus in human extrastriate cortex for visual shape analysis.  J Cogn Neurosci. 1997;  9 133-142
  • 77 Kanwisher N, McDermott J, Chun M. The fusiform face area: a module in human extrastriate cortex specialized for perception of faces.  J Neurosci. 1997;  17 4302-4311
  • 78 Epstein R, Kanwisher N. A cortical representation of the local visual environment.  Nature. 1998;  392 598-601
  • 79 Berndt R S, Mitchum C C, Haendiges A N, Sandson J. Verb retrieval in aphasia: 1. Characterizing single word impairments.  Brain Lang. 1997;  56 68-106
  • 80 Berndt R S, Haendiges A N, Mitchum C C, Sandson J. Verb retrieval in aphasia: 2. Relationship to sentence processing.  Brain Lang. 1997;  56 107-137
  • 81 Cappa S F, Binetti G, Pezzini A, Padovani A, Rozzini L, Trabucchi M. Object and action naming in Alzheimer's disease and frontotemporal dementia.  Neurology. 1998;  50 351-355
  • 82 Grossman M. Not all words are created equal: category-specific deficits in central nervous system disease.  Neurology. 1998;  50 324-325
  • 83 Marshall J, Pring T, Chiat S. Verb retrieval and sentence production in aphasia.  Brain Lang. 1998;  63 159-183
  • 84 Tyler L K, Russell R, Fadili J, Moss H E. The neural representation of nouns and verbs: PET studies.  Brain. 2001;  124 1619-1634
  • 85 Kable J W, Kan I, Wilson A, Thompson-Schill S, Chatterjee A. Conceptual representations of action in lateral temporal cortex.  J Cogn Neurosci. 2005;  17 1855-1870
  • 86 Fiez J A, Raichle M E, Balota D A, Tallal P, Petersen S E. PET activation of posterior temporal regions during auditory word presentation and verb generation.  Cereb Cortex. 1996;  6 1-10
  • 87 Warburton E, Wise R J, Price C J et al.. Noun and verb retrieval by normal subjects. Studies with PET.  Brain. 1996;  119 159-179
  • 88 Perani D, Cappa S, Schnur T, Tettamanti M, Collina S, Rosa M. The neural correlates of verb and noun processing: a PET study.  Brain. 1999;  122 2337-2344
  • 89 Schwartz M F, Saffran E M, Marin O SM. The word order problem in agrammatism. I. Comprehension.  Brain Lang. 1980;  10 249-262
  • 90 Miceli G, Silveri M C, Villa G, Caramazza A. On the basis for the agrammatics difficulty in producing main verbs.  Cortex. 1984;  20 207-220
  • 91 Zingeser L B, Berndt R S. Retrieval of nouns and verbs in agrammatism and anomia.  Brain Lang. 1990;  39 14-32
  • 92 Shapiro L P, Levine B A. Verb processing during sentence comprehension in aphasia.  Brain Lang. 1990;  38 21-47
  • 93 Caramazza A, Miceli G. Selective impairment of thematic role assignment in sentence processing.  Brain Lang. 1991;  41 402-436
  • 94 Kegl J. Levels of representation and units of access relevant to agrammatism.  Brain Lang. 1995;  50 151-200
  • 95 Caplan D. Issues arising in contemporary studies of disorders of syntactic processing in sentence comprehension in agrammatic patients.  Brain Lang. 1995;  50 325-338
  • 96 Frederici A M. Syntactic and semantic processing in aphasic deficits: the availability of prepositions.  Brain Lang. 1982;  15 249-258
  • 97 Grodzinsky Y. Syntactic representations in agrammatic aphasia: the case of prepositions.  Lang Speech. 1988;  31 115-134
  • 98 Chatterjee A, Maher L. Grammar and agrammatism. In: GonzalezRothi L, Crosson B, Nadeau S Aphasia and Language: Theory to Practice. New York, NY; Guilford 2000: 133-156
  • 99 Damasio H, Grabowski T J, Tranel D, Ponto L L, Hichwa R D, Damasio A R. Neural correlates of naming actions and of naming spatial relations.  Neuroimage. 2001;  13 1053-1064
  • 100 Emmorey K, Damasio H, McCullough S et al.. Neural systems underlying spatial language in American Sign Language.  Neuroimage. 2002;  17 812-824
  • 101 Kemmerer D, Tranel D, Barrash J. Patterns of dissociation in the processing of verb meanings in brain-damaged subjects.  Addendum. Language and Cognitive Processes. 2001;  16 461-463
  • 102 Wu D H, Waller S, Chatterjee A. The functional neuroanatomy of thematic role and locative relational knowledge.  J Cogn Neurosci. 2007;  19 1542-1555
  • 103 Talmy L. Fictive motion in language and “ception”. In: Bloom P, Peterson M, Nadel L, Garrett M Language and Space. Cambridge, MA; MIT Press 1996: 211-276
  • 104 Murphy G L. On metaphoric representation.  Cognition. 1996;  60 173-204
  • 105 Gibbs R W. Why many concepts are metaphorical.  Cognition. 1996;  61 309-319
  • 106 Sweetser E. From Etymology to Pragmatics: The Mind-Body Metaphor in Semantic Structure and Semantic Change. Cambridge, United Kingdom; Cambridge University Press 1990
  • 107 Johnson M. The Body in Mind. Chicago, IL; Chicago University Press 1987
  • 108 Lakoff G. Women, Fire, and Dangerous Things. Chicago, IL; Chicago University Press 1987
  • 109 Lakoff G. The invariance hypothesis: is abstract reason based on image-schemas?.  Cogn Linguist. 1990;  1 39-74
  • 110 Beeman M, Chiarello C Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience. Mahwah, NJ: Erlbaum 1998
  • 111 Kiehl K A, Liddle P, Smith A M, Mendrek A, Forster B B, Hare R D. Neural pathways involved in the processing of concrete and abstract words.  Hum Brain Mapp. 1999;  7 225-233
  • 112 Wise R, Howard D, Mummery C et al.. Noun imageability and the temporal lobes.  Neuropsychologia. 2000;  38 985-994
  • 113 Binder J R, Westbury C F, McKiernan K A, Possing E T, Medler D A. Distinct brain systems for processing concrete and abstract concepts.  J Cogn Neurosci. 2005;  17 905-917
  • 114 Wallentin M, Ostergaard S, Lund T, Ostergaard L, Roepstorff A. Concrete spatial language: see what I mean?.  Brain Lang. 2005;  92 221-233
  • 115 Rapp A M, Leube D, Grodd W, Kircher T TJ. Neural correlates of metaphor processing.  Brain Res Cogn Brain Res. 2004;  20 395-402
  • 116 Chen E, Widick P, Chatterjee A. Functional-anatomical organization of predictable metaphor processing.  Brain Lang. 2008;  , In press
  • 117 Thompson-Schill S L, D'Esposito M, Aguirre G K, Farah M J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation.  Proc Natl Acad Sci U S A. 1997;  94 14792-14797
  • 118 Fletcher P C, Shallice T, Dolan R J. “Sculpting the response space”—an account of left prefrontal activation at encoding.  Neuroimage. 2000;  12 404-417
  • 119 Badre D, Poldrack R, Pare-Blagoev J, Insler R, Wagner A. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex.  Neuron. 2005;  47 907-918
  • 120 Bedny M, McGill M, Thompson-Schill S L. Semantic adaptation and competition during word comprehension.  Cereb Cortex. 2008;  , Epub ahead of print
  • 121 Kemmerer D. The semantics of space: integrating linguistic typology and cognitive neuroscience.  Neuropsychologia. 2006;  44 1607-1621
  • 122 Damasio H, Tranel D, Grabowski T, Adolphs R, Damasio A. Neural systems behind word and concept retrieval.  Cognition. 2004;  92 179-229
  • 123 Barsalou L W, Simmons W K. The similarity-in-topography principle: reconciling theories of conceptual deficits.  Cogn Neuropsychol. 2003;  20 451-486
  • 124 Spelke E S, Breinlinger K, Macomber J, Jacobson K. Origins of knowledge.  Psychol Rev. 1992;  99 605-632
  • 125 Spelke E S. Nativism, empiricism and the origins of knowledge.  Infant Behav Dev. 1998;  21 181-200
  • 126 Gibson J J. The Ecological Approach to Visual Perception. Hillsdale, NJ; Erlbaum 1979
  • 127 Piaget J. The Origins of Intelligence in Children. New York, NY; International University Press 1952
  • 128 Baldwin D A. Infants' contribution to the achievement of joint reference.  Child Dev. 1991;  62 875-890
  • 129 Wynn K. Infants' individuation and enumeration of actions.  Psychol Sci. 1996;  7 164-169
  • 130 McDonough L, Choi S, Mandler J M. Understanding spatial relations: flexible infants, lexical adults.  Cognit Psychol. 2003;  46 229-259
  • 131 Pruden S M, Hirsh-Pasek K, Maguire M J, Meyer M A. Foundations of verb learning: Infants form categories of path and manner in motion events. In: Brugos A, Micciulla L, Smith CE Proceedings of the 28th Annual Boston University Conference on Language Development. Somerville, MA; Cascadilla Press 2004: 461-472
  • 132 Quinn P C, Adams A, Kennedy E, Shettler L, Wasnik A. Development of an abstract category representation for the spatial relation between in 6- to 10-month-old infants.  Dev Psychol. 2003;  39 151-163
  • 133 Casasola M, Cohen L. Infant spatial categorization of containment, support or tight fit spatial relations.  Dev Sci. 2002;  5 247-264
  • 134 Pulverman R, Sootsman J, Golinkoff R M, Hirsh-Pasek K. Infants' non-linguistic processing of motion events: One-year-old English speakers are interested in manner and path. In: Clark E Proceedings of the Stanford Child Language Research Forum. Stanford, CA; Center for the Study of Language and Information 2003
  • 135 Casasola M, Cohen L B, Chiarello E. Six-month-old infants' categorization of containment spatial relations.  Child Dev. 2003;  74 679-693
  • 136 Choi S, Bowerman M. Learning to express motion events in English and Korean: the influence of language-specific lexicalization patterns.  Cognition. 1991;  41 83-121
  • 137 Landau B, Zukowski A. Objects, motions, and paths: spatial language in children with Williams syndrome.  Dev Neuropsychol. 2003;  23 105-137

Anjan Chatterjee

Department of Neurology, University of Pennsylvania, 3 West Gates

3400 Spruce Street, Philadelphia, PA 19104

Email: Anjan@mail.med.upenn.edu

    >