Subscribe to RSS
DOI: 10.1055/s-0028-1087942
A Facile Cross-Metathesis-Radical-Cyclisation Approach to Monobenzannulated Spiroketals
Publication History
Publication Date:
24 February 2009 (online)

Abstract
The synthesis of a series of 5,5-, 5,6-, and 6,6-monobenzannulated spiroketals using a novel cross-metathesis-radical-cyclisation approach is reported. Cross metathesis between two olefin coupling partners resulted in the formation of a heterodimer which upon hydrogenation furnished a saturated alcohol product. Oxidative radical cyclisation then afforded the desired monobenzannulated spiroketals in good overall yield.
Key words
cross metathesis - radical cyclisation - spiroketal - rubromycins - berkelic acid
- 1
Paterson I.Anderson EA. Science 2005, 310: 451 - 2
Vaillancourt V.Pratt NE.Perron F.Albizati KF. The Total Synthesis of Spiroketal-Containing Natural Products, In Total Synthesis of Natural Products Vol. 8:ApSimon J. John Wiley and Sons: 2007.Reference Ris Wihthout Link - 3
Brasholz M.Sörgel S.Azap C.Reißig H.-U. Eur. J. Org. Chem. 2007, 3801 - 4
Ueno T.Takahashi H.Oda M.Mizunuma M.Yokoyama A.Goto Y.Mizushina Y.Sakaguchi K.Hayashi H. Biochemistry 2000, 39: 5995 - 5
Stierle AA.Stierle DB.Kelly K. J. Org. Chem. 2006, 71: 5357 - 6a
Tsang KY.Brimble MA.Bremner JB. Org. Lett. 2003, 5: 4425Reference Ris Wihthout Link - 6b
Tsang KY.Brimble MA. Tetrahedron 2007, 63: 6015Reference Ris Wihthout Link - 7
Brimble MA.Flowers CL.Trzoss M.Tsang KY. Tetrahedron 2006, 62: 5883 - 8
Brimble MA.Liu Y.-C.Trzoss M. Synthesis 2007, 1392 - 9
van Hooft PAV.van Swieten PF.van der Marel GA.van Boeckel CAA.van Boom JH. Synlett 2001, 269 - 10
Zhang Y.Xue J.Xin Z.Xie Z.Li Y. Synlett 2008, 940 - 11
Main CA.Rahman SS.Hartley RC. Tetrahedron Lett. 2008, 49: 4771 - 12a
Huang Y.Pettus TRR. Synlett 2008, 1353Reference Ris Wihthout Link - 12b
Marsini MA.Huang Y.Lindsey CC.Wu K.-L.Pettus TRR. Org. Lett. 2008, 10: 1477Reference Ris Wihthout Link - 12c
Bray CD. Org. Biomol. Chem. 2008, 6: 2815Reference Ris Wihthout Link - 12d
Bray CD. Synlett 2008, 2500Reference Ris Wihthout Link - 13a
Martín A.Salazar JA.Suárez E. J. Org. Chem. 1996, 61: 3999Reference Ris Wihthout Link - 13b
Brimble MA.Horner GM.Stevenson RJ. Aust. J. Chem. 1996, 49: 189Reference Ris Wihthout Link - 13c
Brimble MA. Molecules 2004, 9: 394Reference Ris Wihthout Link - 13d
Meilert K.Brimble MA. Org. Biomol. Chem. 2006, 4: 2184Reference Ris Wihthout Link - 14
Trend RM.Ramtohul YK.Stoltz BM. J. Am. Chem. Soc. 2005, 127: 17778 - 15
Larock RC.Berrios-Peña NG.Fried CA.Yum EK.Tu C.Leong W. J. Org. Chem. 1993, 58: 4509 - 16
Westwell AD.Williams JMJ. Tetrahedron 1997, 53: 13063 - 17
Cleary PA.Woerpel KA. Org. Lett. 2005, 7: 5531 - 18
Waser J.Gaspar B.Nambu H.Carreira EM. J. Am. Chem. Soc. 2006, 128: 11693 - 19
Chatterjee AK.Choi T.-L.Sanders DP.Grubbs RH. J. Am. Chem. Soc. 2003, 125: 11360 - 20
Normant A. Bull. Soc. Chim. Fr. 1940, 7: 37 - 22
Deslongchamps P. Stereoelectronic Effects in Organic Chemistry, In Organic Chemistry Series Vol. 1:Baldwin JE. Pergamon; Oxford: 1983. p.4Reference Ris Wihthout Link
References and Notes
General Procedure - Oxidative
Radical Cyclisation
A mixture of alcohol (0.052 mmol),
PhI(OAc)2 (0.106 mmol), and I2 (0.118 mmol)
in anhyd cyclohexane (4.3 mL) was degassed with argon at r.t. for
15 min. The resulting solution was cooled in an ice-water
bath (7 ˚C) and irradiated with a desk lamp (60
W) for 2-3 h after which it was diluted with Et2O
(10 mL), then sat. Na2S2O3 (10
mL) and sat. NaHCO3 (10 mL) were added. After separation
of both phases, the aqueous phase was extracted with Et2O (4 × 15
mL). The organic phases were combined, dried over anhyd MgSO4,
filtered, and the solvents concentrated in vacuo. The crude product
was purified by column chromatography on SiO2 (100% n-pentane, then n-pentane-Et2O,
12:1) to give the spiroketal product.
(±)-4′-Methyl-3′,4′5′,6′tetrahydro-3
H
-spiro(benzofuran-2,2′-pyran) (6)
Pale yellow oil (7 mg, 0.034
mmol, 42%); R
f
= 0.31 (hexanes-Et2O,
10:1). IR (film): 2946, 2925, 2869, 1597, 1479, 1461, 1377, 1238,
1216, 1121, 1096, 1084, 1034, 869, 826, 810, 791, 776, 747, 706
cm-¹. ¹H NMR (300
MHz, CDCl3): δ = 0.98
(d, J = 6.6
Hz, 3 H, C-4′-CH
3),
1.33 (qd, J = 12.8,
4.9 Hz, 1 H, Hax-5′), 1.47 (dd, J = 13.1,
12.5 Hz, 1 H, Hax-3′), 1.64 (dtd, J = 13.2,
3.8, 1.9 Hz, 1 H, Heq-5′), 2.03 (ddd, J = 13.4,
3.8, 1.8 Hz, 1 H, Heq-3′), 2.08-2.24
(m, 1 H, Hax-4′), 3.05 (d, J = 16.3
Hz, 1 H, Ha-3), 3.12 (d, J = 16.3
Hz, 1 H, Hb-3), 3.74 (ddd, J = 11.4,
4.9, 1.5 Hz, 1 H, Heq-6′), 4.06 (ddd, J = 11.3,
13.0, 2.4 Hz, 1 H, Hax-6′), 6.80 (d, J = 7.9 Hz, 1
H, H-7), 6.85 (td, J = 7.4,
0.9 Hz, 1 H, H-5), 7.10-7.17 (m, 2 H, H-4 and H-6). ¹³C
NMR (75 MHz, CDCl3): δ = 22.1 (CH3,
C-4′-CH3), 26.2 (CH,
C-4′), 33.3 (CH2, C-5′), 42.5 (CH2,
C-3′) 42.8 (CH2, C-3), 62.6 (CH2,
C-6′), 109.7 (CH, C-7), 109.8 (C, C-2), 120.6 (CH, C-5),
124.9 (CH, C-4), 126.0 (C, C-3a), 127.9 (CH, C-6), 158.2 (C, C-7a).
MS (EI, 70 eV): m/z (%) = 41
(30), 51 (12), 55 (15), 69 (16), 78 (41), 91 (12), 97 (70), 107
(29), 115 (4), 121 (4.5), 131 (21), 134 (10), 145 (3), 159 (2.5),
171 (1.5), 189 (59.5), 203 (5), 204 (100) [M]+. HRMS
(EI): m/z [M]+ calcd
for C13H16O2: 204.1150; found: 204.1146.
(±)-4′-Methyl-4′,5′-dihydro-3
H
,3′
H
-spiro(benzofuran-2,2′-furan)
(7a,b)
Pale yellow oil (8 mg, 0.042 mmol, 73%); 7a/7b = 1.4:1, mixture
of inseparable major (7a) and minor* (7b) diastereomers; R
f
= 0.33
(hexanes-EtOAc, 9:1). IR (film): 2954, 2924, 2855, 1598,
1479, 1462, 1377, 1241, 1120, 1082, 1010, 830, 779, 747, 706 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.13
(d, J = 6.8
Hz, 3 H, C-4′-CH
3),
1.20 (d, J = 6.6
Hz, 2.1 H, C-4′-CH
3*),
1.73 (dd, J = 12.9,
10.1 Hz, 1 H, HB-3′), 2.12 (dd, J = 13.6,
6.0 Hz, 0.7 H, HA-3′*), 2.38 (dd, J = 13.4,
9.4 Hz, 0.7 H, HB-3′*), 2.45-2.54
(m, 0.7 H, H-4′*), 2.51 (dd, J = 12.9,
7.0 Hz, 1 H, HA-3′), 2.69-2.82 (m, 1
H, H-4′), 3.23-3.32 (m, 3.4 H, H-3 and H-3*),
3.56 (t, J = 8.0
Hz, 1 H, HB-5′), 3.68 (t, J = 8.2
Hz, 0.7 H, HA-5′*), 4.13 (t, J = 7.9 Hz,
0.7 H, HB-5′*), 4.25 (t, J = 8.0 Hz,
1 H, HA-5′), 6.76 (d, J = 8.4
Hz, 1 H, H-7), 6.79 (d, J = 8.9
Hz, 0.7 H, H-7*), 6.85 (t, J = 7.4
Hz, 1.7 H, H-5 and H-5*), 7.11 (t, J = 7.9
Hz, 1.7 H, H-6 and H-6*), 7.16 (d, J = 7.4
Hz, 1.7 H, H-4 and H-4*). ¹³C
NMR (100 MHz, CDCl3): δ = 17.7
(CH3, C-4′-CH3),
18.0 (CH3, C-4′-CH3*),
32.3 (CH, C-4′), 32.9 (CH, C-4′*), 39.0
(CH2, C-3), 40.1 (CH2, C-3*), 44.6
(CH2, C-3′*), 45.2 (CH2,
C-3′), 75.3 (CH2, C-5′*),
75.5 (CH2, C-5′), 109.4 (CH, C-7), 109.5 (CH,
C-7*), 118.6 (C, C-2*), 118.7 (C, C-2), 120.46
(CH, C-5), 120.51 (CH, C-5*), 124.49 (CH, C-4*),
124.53 (CH, C-4), 125.7 (C, C-3a), 125.8 (C, C-3a*), 127.89
(CH, C-6*), 127.94 (CH, C-6), 157.7 (C, C-7a), 158.0 (C,
C-7a*). MS (EI, 70 eV): m/z (%) = 37
(21), 47 (41.5), 78 (10), 83 (100), 85 (65.5), 107 (21), 131 (6),
134 (3.5), 175 (9), 190 (30) [M]+.
HRMS (EI): m/z [M]+ calcd
for C12H14O2: 190.0994; found:
190.0990.