Zusammenfassung
Zur vollständigen Einschätzung der Spätfolgen bei diagnostischem Röntgen ist es erforderlich,
die Strahlenempfindlichkeit in verschiedenen Altersklassen zu berücksichtigen sowie
die Tatsache, dass neben malignen Erkrankungen auch benigne Neubildungen induziert
werden, die eine erhebliche Schädigung des Patienten bedeuten können. Risikoschätzungen
werden für das Beispiel pädiatrischer CTs am Schädel vorgenommen, sowie für Hirntumore
bei Erwachsenen. Dosiswirkungsbeziehungen für Hirn-, Haut- und Schilddrüsentumore,
weitere Tumore im Kopfbereich sowie Leukämie und Katarakte sind aus der Literatur
ableitbar. Anhand von Schätzwerten aus der Literatur über die Häufigkeit von Schädel-CTs
in der BRD wird eine jährliche Rate strahleninduzierter Erkrankungen ermittelt. Auf
1 000 pädiatrische CT-Untersuchungen ergeben sich etwa 3 zusätzliche Tumorerkrankungen
im Kopfbereich und Leukämien, d.h. die Wahrscheinlichkeit für einen Spätschaden nach
einer Schädel-CT ist im Promillebereich anzusetzen. Außerdem muss man eine nennenswerte
Anzahl von Kataraktbildungen erwarten. Die strahleninduzierte Rate von Meningeomen
und anderen Hirntumoren durch CT trägt mit großer Wahrscheinlichkeit zu dem in etlichen
Industrienationen beobachteten kontinuierlichen Anstieg dieser Erkrankungen bei, ebenso
die Exposition des Knochenmarks zum beobachteten Anstieg kindlicher Leukämieerkrankungen.
Abstract
A complete assessment of late effects of X-ray diagnostics should take into account
that radiation sensitivity varies considerably for the different ages at exposure
and, furthermore, that not only malignant diseases but also benign neoplasms are induced
which also may lead to severe detriment of the patient. Risk estimates are derived
for paediatric head CTs as well as for brain tumours in adults. Dose-effect relationships
for tumours of the brain, skin, thyroid, and other sites of the head region, leukaemia,
and cataracts are taken from the literature. On the basis of estimates for Germany
about the number of head scans, the annual rate of radiation-induced diseases is calculated.
1 000 annual paediatric CT investigations of the skull will lead to about 3 excess
neoplasms in the head region, i.e., the probability of an induced late effect must
be suspected in the range of some thousandths. Additionally, a relevant increase of
cataracts must be considered. The radiation-induced occurrence of meningiomas and
other brain tumours most probably contributes to the continuously increasing incidence
of these diseases which is observed in several industrial nations, as well as the
exposure of the bone marrow by CT to the increase of childhood leukaemia.
Schlüsselwörter
Strahlenrisiko - CT-Diagnostik - Tumore im Kopf- und Halsbereich - Leukämie - Katarakte
Key words
radiation risk - CT diagnostics - head and neck tumours - leukaemia - cataracts
Literatur
1
Brix G, Nekolla E, Griebel J.
Strahlenexposition von Patienten durch diagnostische und interventionelle Röntgenanwendungen.
Radiologe.
2005;
45
340-349
2
Europäische Kommission.
.Generaldirektion Umwelt. ed.
Leitlinien für die Überweisung zur Durchführung von Bild gegebenden Verfahren . Strahlenschutz 2000: 118
3
Strahlenschutzkommission
.Orientierungshilfe für radiologische und nuklearmedizinische Untersuchungen. Heft
30 Berlin: H Hoffmann 2006
4
ICRP, Int. Commission on Radiological Protection.
.1990 Recommendations of the International Commission on Radiological Protection. ICRP-Publ.60,
Ann. ICRP 1991 21
(No.1/3)
5
ICRP, Int. Commission on Radiological Protection.
.The 2007 Recommendations of the International Commission on Radiological Protection. ICRP-Publ.103,
Ann. ICRP 2007 37
(No.2/4)
6
Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
.
Umweltradioaktivität und Strahlenbelastung im Jahr 2007.
Unterrichtung durch die Bundesregierung.
http://www.bmu.de/files/pdfs/allgemein/application/pdf/parlamentsbericht07.pdf
7
Brenner DJ, Elliston CD, Hall EJ. et al .
Estimated risks of radiation induced fatal cancer from pediatric CT.
AJR.
2001;
176
289-296
8
Regulla D, Griebel J, Noßke D. et al .
Erfassung und Bewertung der Patientenexposition in der diagnostischen Radiologie und
Nuklearmedizin.
Z Med Phys.
2003;
13
127-135
9
Brenner DJ.
Effective dose: a flawed concept that could and should be replaced.
Br J Radiol.
2008;
81
((967))
521-523
10
Helseth A.
The incidence of primary central nervous system neoplasms before and after computerized
tomography availability.
J Neurosurg.
1995;
83
999-1003
11
Jukich PJ, McCarthy BJ, Surawicz TS. et al .
Trends in incidence of primary brain tumors in the United States, 1985–1994.
Neuro-Oncology.
2001;
3
141-151
12
Christensen HC, Kosteljanetz M, Johansen C.
Incidences of gliomas and meningiomas in Denmark, 1943 to 1997.
Neurosurgery.
2003;
52
1327-1334
13
Lönn S, Klaeboe LS, Hall P. et al .
Incidence trends of adult primary intracerebral tumors in four Nordic countries.
Int J Cancer.
2004;
108
450-455
14
Yonehara S, Brenner AV, Kishikawa M. et al .
Clinical and epidemiologic characteristics of first primary tumors of the central
nervous system and related organs among atomic bomb survivors in Hiroshima and Nagasaki,
1958-1995.
Cancer.
2004;
101
1644-1654
15
Umansky F, Shoshan Y, Rosenthal G. et al .
Radiation-induced meningioma.
Neurosurg Focus.
2008;
24
E7
16
Preston-Martin S, White SC.
Brain and salivary gland tumors related to prior dental radiography: implications
for current practice.
J Am Dental Ass.
1990;
120
151-158
17
Neuberger JS, Brownson RC, Morantz RA. et al .
Association of brain cancer with dental x-rays and occupation in Missouri.
Cancer Detect Prev.
1991;
15
31-34
18
Rodvall Y, Ahlbom A, Pershagen G. et al .
Dental radiography after age 25 years, amalgam fillings and tumours of the central
nervous system.
Oral Oncol.
1998;
34
265-269
19
Longstreth Jr WT, Phillips LE, Drangsholt M. et al .
Dental X-rays and the risk of intracranial meningioma: a population-based case-control
study.
Cancer.
2004;
100
1026-1034
20
Hardell L, Hansson Mild KH, Pahlson A. et al .
Ionizing radiation, cellular telephones and the risk for brain tumours.
Eur J Cancer Prev.
2001;
10
523-529
21
Preston DL, Ron E, Yonehara S. et al .
Tumors of the nervous system and pituary gland associated with atomic bomb radiation
exposure.
J Natl Cancer Inst.
2002;
94
1555-1563
22
Sadetzki S, Chetrit A, Freedmann L. et al .
Long-term follow-up for brain tumor development after childhood exposure to ionizing
radiation for Tinea capitis.
Radiat Res.
2005;
163
424-432
23
Shore RE, Moseson M, Harley N. et al .
Tumors and other diseases following childhood x-ray treatment for ringworm of the
scalp (Tinea Capitis).
Health Phys.
2003;
85
404-408
24
Karlsson P, Holmberg E, Lundell M. et al .
Intracranial tumors after exposure to ionizing radiation during infancy: a pooled
analysis of two Swedish cohorts of 28,008 infants with skin hemangioma.
Radiat Res.
1998;
150
357-364
25
Straume T.
High-energy gamma rays in Hiroshima and Nagasaki: implications for risk and wR .
Health Phys.
1995;
69
954-956
26
Deutsches Krankenhausinstitut e.V.
.
Erfassung der Häufigkeit bildgebender Diagnostik, insbesondere strahlendiagnostischer
Maßnahmen und der Altersverteilung der Patienten.
, BMU-2005-660
Schriftenreihe Reaktorsicherheit und Strahlenschutz.
27
Staneczek W, Jänisch W.
Epidemiologie der primären Tumoren des Zentralnervensystems bei Kindern und Jugendlichen.
Pathologe.
1994;
15
207-215
28
Gemeinsames Krebsregister der Länder Berlin, Brandenburg, Mecklenburg-Vorpommern,
Sachsen-Anhalt, Freistaaten Sachsen und Thüringen
.
Krebsinzidenz 2003–2004 im Erfassungsgebiet des Gemeinsamen Krebsregisters – Jahresbericht
– Schriftenreihe des GKR 1/2008.
http://www.krebsregister-berlin.de
29
Claus EB, Bondy ML, Schildkraut JM. et al .
Epidemiology of intracranial meningioma.
Neurosurg.
2005;
57
1088-1094
30
Gibson R, Graham S, Lilienfeld AM. et al .
Irradiation in the epidemiology of leukemia among adults.
J Natl Cancer Inst.
1972;
48
301-311
31
Osechinskij IV, Shanakina TP.
Epidemiological analysis of association between the leukemia and lymphoma incidence
and the X-ray diagnostic loads.
Problemy Gematologii i Perelivanija Krovi.
1978;
23
13-17
, Moskau
32
Bross IDJ, Ball M, Falen S.
A dosage response curve for the one rad range: adult risk from diagnostic radiation.
Am J Public Health.
1979;
69
130-136
33
Shu XO, Gao YT, Brinton LA. et al .
A population-based case-control study of childhood leukemia in Shanghai.
Cancer.
1988;
62
635-644
34
Preston-Martin S, Thomas DC, Yu MC. et al .
Diagnostic radiography as a risk factor for chronic myeloid and monocytic leukaemia
(CML).
Brit J Cancer.
1989;
59
639-644
35
Shu XO, Jin F, Linet MS. et al .
Diagnostic X-ray and ultrasound exposure and risk of childhood cancer.
Br J Cancer.
1994;
70
531-536
36
Kaletsch U, Haaf G, Kaatsch P. et al .
Fallkontrollstudie zu den Ursachen von Leukämie bei Kindern in Niedersachsen. Institut
für Med.
Statistik u. Dokumentation., Joh..
, Gutenberg-Universität Mainz, Juli 1995
37
Schmitz-Feuerhake I, von Boetticher H, Dannheim B. et al .
Estimation of x-ray overexposure in a childhood leukaemia cluster by means of chromosome
aberration analysis.
Radiat Prot Dos.
2002;
98
291-297
38
Infante-Rivard C.
Diagnostic x rays, DNA repair genes and childhood acute lymphoblastic leukemia.
Health Phys.
2003;
85
60-64
39
Shu XO, Potter JD, Linet MS. et al .
Diagnostic x-rays and ultrasound exposure and risk of childhood acute lymphoblastic
leukemia by immunophenotype.
Cancer Epidemiol Biomarkers Prev.
2002;
11
177-185
40
ICRP No.70. Int. Commission on Radiological Protection.
.
Basic anatomical and physiological data for use in radiological protection.
Ann ICRP.
1995;
25
(No 2)
41
Albert RE, Omran AR.
Follow-up study of patients treated by X-ray epilation for tinea capitis.
Arch Environ Health.
1968;
17
899-918
42
Ron E, Modan B, Boice JD.
Mortality after radiotherapy for ringworm of the scalp.
Am J Epidemiol.
1988;
127
713-725
43
Shimizu Y, Kato H, Schull W.
Life Span Study Report 11. Part 2. Cancer mortality in the years 1950-85 based on
the recently revised doses (DS86).
RERF Technical Report TR 5-88. Hiroshima, Radiation Effects Foundation.
1989;
44
BEIR V: .Committee on the Biological Effects of Ionizing Radiations, Health Effects
of Exposure to Low Levels of Ionizing Radiation. Washington D.C.: Nat. Academy Press
1990
45
Nickoloff E.
Current adult and pediatric CT doses.
Pediatr Radiol.
2002;
32
250-260
46
Spix C, Eletr D, Blettner M. et al .
Temporal trends in the incidence rate of childhood cancer in Germany 1987–2004.
Int J Cancer.
2008;
122
1859-1867
47
Land CE, Saku T, Hayashi Y. et al .
Incidence of salivary gland tumors among atomic bomb survivors, 1950–1987.
Evaluation of radiation-related risk. Radiat Res.
1996;
146
28-36
48
Modan B, Chetrit A, Alfandary E. et al .
Increased risk of salivary gland tumors after low-dose irradiation.
Laryngoscope.
1998;
108
1095-1097
49
Harley NH, Albert RE, Shore RE. et al .
Follow-up study of patients treated by x-ray epilation for tinea capitis.
Estimation of the dose to the thyroid and pituitary glands and other structures of
the head and neck. Phys Med Biol.
1976;
21
631-642
50
BEIR VII PHASE 2: Committee to Assess Health Risks from Exposure to Low Levels of
Ionizing Radiation.
.Health Risks from Exposure to Low Levels of Ionizing Radiation. Washington D.C.:
Nat. Academies Press http://www.nap.edu 2006
51
Sadetzki S, Chetrit A, Lubina A. et al .
Risk of thyroid cancer after childhood exposure to ionizing radiation for tinea capitis.
J Clin Endocrinol Metab.
2006;
91
4798-4804
52
Lundell M, Hakulinen T, Holm LE.
Thyroid cancer after radiotherapy for skin hemangioma in infancy.
Radiat Res..
1994;
140
((3))
334-339
53
Holmberg E, Wallgren A, Holm L-E. et al .
Dose-response relationship for parathyroid adenoma after exposure to ionizing radiation
in infancy.
Radiat Res.
2002;
158
418-423
54
Rasmuson T, Damber L, Johansson L. et al .
Increased incidence of parathyroid adenomas following x-ray treatment of benign diseases
in the cervical spine in adult patients.
Clin Endocrinol.
2002;
57
731-734
55
Shore RE, Moseson M, Xue X. et al .
Skin cancer after x-ray treatment for scalp ringworm.
Radiat Res.
2002;
157
410-418
56
Huda W.
Effective doses to adult and pediatric patients.
Pediatr Radiol.
2002;
32
272-279
57
Horn-Ross P, Ljung B, Morrow M.
Environmental factors and the risk of salivary gland cancer.
Epidemiology.
1997;
8
414-419
58
Fedirko PA, Buzunov VA.
Risk assessment of eye diseases development in Chernobyl clean-up workers in remote
period after the catastrophe.
International Journal of Radiation Medicine (Kiev).
2003;
5
211-216
59
Rafnsson V, Olafsdottir E, Hrafnkelsson J. et al .
Cosmic radiation increases the risk of nuclear cataract in airline pilots.
Arch Ophthalmol.
2005;
123
1102-1105
60
Schmitz-Feuerhake I, Pflugbeil S.
Strahleninduzierte Katarakte (Grauer Star) als Folge berufsmäßiger Exposition und
beobachtete Latenzzeiten.
Strahlentelex Nr.
, 456–457 v. 5.1.2006
1-7
61
Worgul BV, Kundiev Y, Likhtarev I. et al .
Use of subjective and nonsubjective methodologies to evaluate lens radiation damage
in exposed populations – an overview.
Radiat Environ Biophys.
1996;
35
137-144
62
Hall P, Granath F, Lundell M. et al .
Lenticular opacities in individuals exposed to ionizing radiation in therapy.
Radiat Res.
1999;
152
((2))
190-195
63
Klein BEK, Klein R, Linton KLP. et al .
Diagnostic X-ray exposure and lens opacities: the Beaver Dam eye study.
Am J Public Health.
1993;
83
588-590
64
Klein BEK, Klein R, Moss SE.
Exposure to diagnostic x-rays and incident age-related eye disease.
Ophthalmic Epidemiol.
2000;
7
61-65
65
Stein SC, Hurst RW, Sonnad SS.
Meta-analysis of cranial CT scans in children. A mathematical model to predict radiation-induced
tumors.
Pediatr Neurosurg.
2008;
44
448-457
66
Blettner M, Schlehofer B, Samkange-Zeeb F. et al .
Medical exposure to ionising radiation and the risk of brain tumors: Interphone study
group, Germany.
Eur J Cancer.
2007;
43
1990-1998
67
Kuni H, Schmitz-Feuerhake I, Dieckmann H.
Mammography screening – neglected aspects of radiation risks.
Gesundheitswesen.
2003;
65
443-446
68
Strahlenschutzkommission.
.
Bildgebende Diagnostik beim Kind – Strahlenschutz, Rechtfertigung und Effektivität.
Berichte der SSK Heft 53, Jahresbericht 2006 der SSK.
http://www.ssk.de
69
Brenner DJ, Hall EJ.
Computed tomography – an increasing source of radiation exposure.
N Engl J Med.
2007;
357
((22))
2277-2284
Korrespondenzadresse
Dr. rer. nat. I. Schmitz-Feuerhake
Univ.-Prof. i. R.
Grenzstraße 20
30627 Hannover
Email: ingesf@uni-bremen.de