Gesundheitswesen 2010; 72(4): 246-254
DOI: 10.1055/s-0029-1215570
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Röntgenrisiko: Abschätzung der strahleninduzierten Meningeome und anderer Spätschäden bei Exposition des Schädels

Radiation Risks from Diagnostic Radiology: Meningiomas and other Late Effects after Exposure of the SkullI. Schmitz-Feuerhake1 , S. Pflugbeil2 , C. Pflugbeil3
  • 1Hannover
  • 2Berlin
  • 3Immanuel Krankenhaus Berlin
Further Information

Publication History

Publication Date:
23 June 2009 (online)

Zusammenfassung

Zur vollständigen Einschätzung der Spätfolgen bei diagnostischem Röntgen ist es erforderlich, die Strahlenempfindlichkeit in verschiedenen Altersklassen zu berücksichtigen sowie die Tatsache, dass neben malignen Erkrankungen auch benigne Neubildungen induziert werden, die eine erhebliche Schädigung des Patienten bedeuten können. Risikoschätzungen werden für das Beispiel pädiatrischer CTs am Schädel vorgenommen, sowie für Hirntumore bei Erwachsenen. Dosiswirkungsbeziehungen für Hirn-, Haut- und Schilddrüsentumore, weitere Tumore im Kopfbereich sowie Leukämie und Katarakte sind aus der Literatur ableitbar. Anhand von Schätzwerten aus der Literatur über die Häufigkeit von Schädel-CTs in der BRD wird eine jährliche Rate strahleninduzierter Erkrankungen ermittelt. Auf 1 000 pädiatrische CT-Untersuchungen ergeben sich etwa 3 zusätzliche Tumorerkrankungen im Kopfbereich und Leukämien, d.h. die Wahrscheinlichkeit für einen Spätschaden nach einer Schädel-CT ist im Promillebereich anzusetzen. Außerdem muss man eine nennenswerte Anzahl von Kataraktbildungen erwarten. Die strahleninduzierte Rate von Meningeomen und anderen Hirntumoren durch CT trägt mit großer Wahrscheinlichkeit zu dem in etlichen Industrienationen beobachteten kontinuierlichen Anstieg dieser Erkrankungen bei, ebenso die Exposition des Knochenmarks zum beobachteten Anstieg kindlicher Leukämieerkrankungen.

Abstract

A complete assessment of late effects of X-ray diagnostics should take into account that radiation sensitivity varies considerably for the different ages at exposure and, furthermore, that not only malignant diseases but also benign neoplasms are induced which also may lead to severe detriment of the patient. Risk estimates are derived for paediatric head CTs as well as for brain tumours in adults. Dose-effect relationships for tumours of the brain, skin, thyroid, and other sites of the head region, leukaemia, and cataracts are taken from the literature. On the basis of estimates for Germany about the number of head scans, the annual rate of radiation-induced diseases is calculated. 1 000 annual paediatric CT investigations of the skull will lead to about 3 excess neoplasms in the head region, i.e., the probability of an induced late effect must be suspected in the range of some thousandths. Additionally, a relevant increase of cataracts must be considered. The radiation-induced occurrence of meningiomas and other brain tumours most probably contributes to the continuously increasing incidence of these diseases which is observed in several industrial nations, as well as the exposure of the bone marrow by CT to the increase of childhood leukaemia.

Literatur

  • 1 Brix G, Nekolla E, Griebel J. Strahlenexposition von Patienten durch diagnostische und interventionelle Röntgenanwendungen.  Radiologe. 2005;  45 340-349
  • 2 Europäische Kommission. .Generaldirektion Umwelt. ed. Leitlinien für die Überweisung zur Durchführung von Bild gegebenden Verfahren. Strahlenschutz 2000: 118
  • 3 Strahlenschutzkommission .Orientierungshilfe für radiologische und nuklearmedizinische Untersuchungen. Heft 30 Berlin: H Hoffmann 2006
  • 4 ICRP, Int. Commission on Radiological Protection. .1990 Recommendations of the International Commission on Radiological Protection. ICRP-Publ.60, Ann. ICRP 1991 21 (No.1/3)
  • 5 ICRP, Int. Commission on Radiological Protection. .The 2007 Recommendations of the International Commission on Radiological Protection. ICRP-Publ.103, Ann. ICRP 2007 37 (No.2/4)
  • 6 Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit . Umweltradioaktivität und Strahlenbelastung im Jahr 2007.  Unterrichtung durch die Bundesregierung. http://www.bmu.de/files/pdfs/allgemein/application/pdf/parlamentsbericht07.pdf
  • 7 Brenner DJ, Elliston CD, Hall EJ. et al . Estimated risks of radiation induced fatal cancer from pediatric CT.  AJR. 2001;  176 289-296
  • 8 Regulla D, Griebel J, Noßke D. et al . Erfassung und Bewertung der Patientenexposition in der diagnostischen Radiologie und Nuklearmedizin.  Z Med Phys. 2003;  13 127-135
  • 9 Brenner DJ. Effective dose: a flawed concept that could and should be replaced.  Br J Radiol. 2008;  81 ((967)) 521-523
  • 10 Helseth A. The incidence of primary central nervous system neoplasms before and after computerized tomography availability.  J Neurosurg. 1995;  83 999-1003
  • 11 Jukich PJ, McCarthy BJ, Surawicz TS. et al . Trends in incidence of primary brain tumors in the United States, 1985–1994.  Neuro-Oncology. 2001;  3 141-151
  • 12 Christensen HC, Kosteljanetz M, Johansen C. Incidences of gliomas and meningiomas in Denmark, 1943 to 1997.  Neurosurgery. 2003;  52 1327-1334
  • 13 Lönn S, Klaeboe LS, Hall P. et al . Incidence trends of adult primary intracerebral tumors in four Nordic countries.  Int J Cancer. 2004;  108 450-455
  • 14 Yonehara S, Brenner AV, Kishikawa M. et al . Clinical and epidemiologic characteristics of first primary tumors of the central nervous system and related organs among atomic bomb survivors in Hiroshima and Nagasaki, 1958-1995.  Cancer. 2004;  101 1644-1654
  • 15 Umansky F, Shoshan Y, Rosenthal G. et al . Radiation-induced meningioma.  Neurosurg Focus. 2008;  24 E7
  • 16 Preston-Martin S, White SC. Brain and salivary gland tumors related to prior dental radiography: implications for current practice.  J Am Dental Ass. 1990;  120 151-158
  • 17 Neuberger JS, Brownson RC, Morantz RA. et al . Association of brain cancer with dental x-rays and occupation in Missouri.  Cancer Detect Prev. 1991;  15 31-34
  • 18 Rodvall Y, Ahlbom A, Pershagen G. et al . Dental radiography after age 25 years, amalgam fillings and tumours of the central nervous system.  Oral Oncol. 1998;  34 265-269
  • 19 Longstreth Jr WT, Phillips LE, Drangsholt M. et al . Dental X-rays and the risk of intracranial meningioma: a population-based case-control study.  Cancer. 2004;  100 1026-1034
  • 20 Hardell L, Hansson Mild KH, Pahlson A. et al . Ionizing radiation, cellular telephones and the risk for brain tumours.  Eur J Cancer Prev. 2001;  10 523-529
  • 21 Preston DL, Ron E, Yonehara S. et al . Tumors of the nervous system and pituary gland associated with atomic bomb radiation exposure.  J Natl Cancer Inst. 2002;  94 1555-1563
  • 22 Sadetzki S, Chetrit A, Freedmann L. et al . Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for Tinea capitis.  Radiat Res. 2005;  163 424-432
  • 23 Shore RE, Moseson M, Harley N. et al . Tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (Tinea Capitis).  Health Phys. 2003;  85 404-408
  • 24 Karlsson P, Holmberg E, Lundell M. et al . Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma.  Radiat Res. 1998;  150 357-364
  • 25 Straume T. High-energy gamma rays in Hiroshima and Nagasaki: implications for risk and wR.  Health Phys. 1995;  69 954-956
  • 26 Deutsches Krankenhausinstitut e.V. . Erfassung der Häufigkeit bildgebender Diagnostik, insbesondere strahlendiagnostischer Maßnahmen und der Altersverteilung der Patienten.  , BMU-2005-660 Schriftenreihe Reaktorsicherheit und Strahlenschutz.
  • 27 Staneczek W, Jänisch W. Epidemiologie der primären Tumoren des Zentralnervensystems bei Kindern und Jugendlichen.  Pathologe. 1994;  15 207-215
  • 28 Gemeinsames Krebsregister der Länder Berlin, Brandenburg, Mecklenburg-Vorpommern, Sachsen-Anhalt, Freistaaten Sachsen und Thüringen . Krebsinzidenz 2003–2004 im Erfassungsgebiet des Gemeinsamen Krebsregisters – Jahresbericht – Schriftenreihe des GKR 1/2008. http://www.krebsregister-berlin.de
  • 29 Claus EB, Bondy ML, Schildkraut JM. et al . Epidemiology of intracranial meningioma.  Neurosurg. 2005;  57 1088-1094
  • 30 Gibson R, Graham S, Lilienfeld AM. et al . Irradiation in the epidemiology of leukemia among adults.  J Natl Cancer Inst. 1972;  48 301-311
  • 31 Osechinskij IV, Shanakina TP. Epidemiological analysis of association between the leukemia and lymphoma incidence and the X-ray diagnostic loads.  Problemy Gematologii i Perelivanija Krovi. 1978;  23 13-17 , Moskau
  • 32 Bross IDJ, Ball M, Falen S. A dosage response curve for the one rad range: adult risk from diagnostic radiation.  Am J Public Health. 1979;  69 130-136
  • 33 Shu XO, Gao YT, Brinton LA. et al . A population-based case-control study of childhood leukemia in Shanghai.  Cancer. 1988;  62 635-644
  • 34 Preston-Martin S, Thomas DC, Yu MC. et al . Diagnostic radiography as a risk factor for chronic myeloid and monocytic leukaemia (CML).  Brit J Cancer. 1989;  59 639-644
  • 35 Shu XO, Jin F, Linet MS. et al . Diagnostic X-ray and ultrasound exposure and risk of childhood cancer.  Br J Cancer. 1994;  70 531-536
  • 36 Kaletsch U, Haaf G, Kaatsch P. et al . Fallkontrollstudie zu den Ursachen von Leukämie bei Kindern in Niedersachsen. Institut für Med.  Statistik u. Dokumentation., Joh.. , Gutenberg-Universität Mainz, Juli 1995
  • 37 Schmitz-Feuerhake I, von Boetticher H, Dannheim B. et al . Estimation of x-ray overexposure in a childhood leukaemia cluster by means of chromosome aberration analysis.  Radiat Prot Dos. 2002;  98 291-297
  • 38 Infante-Rivard C. Diagnostic x rays, DNA repair genes and childhood acute lymphoblastic leukemia.  Health Phys. 2003;  85 60-64
  • 39 Shu XO, Potter JD, Linet MS. et al . Diagnostic x-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype.  Cancer Epidemiol Biomarkers Prev. 2002;  11 177-185
  • 40 ICRP No.70. Int. Commission on Radiological Protection. . Basic anatomical and physiological data for use in radiological protection.  Ann ICRP. 1995;  25 (No 2)
  • 41 Albert RE, Omran AR. Follow-up study of patients treated by X-ray epilation for tinea capitis.  Arch Environ Health. 1968;  17 899-918
  • 42 Ron E, Modan B, Boice JD. Mortality after radiotherapy for ringworm of the scalp.  Am J Epidemiol. 1988;  127 713-725
  • 43 Shimizu Y, Kato H, Schull W. Life Span Study Report 11. Part 2. Cancer mortality in the years 1950-85 based on the recently revised doses (DS86).  RERF Technical Report TR 5-88. Hiroshima, Radiation Effects Foundation. 1989; 
  • 44 BEIR V: .Committee on the Biological Effects of Ionizing Radiations, Health Effects of Exposure to Low Levels of Ionizing Radiation. Washington D.C.: Nat. Academy Press 1990
  • 45 Nickoloff E. Current adult and pediatric CT doses.  Pediatr Radiol. 2002;  32 250-260
  • 46 Spix C, Eletr D, Blettner M. et al . Temporal trends in the incidence rate of childhood cancer in Germany 1987–2004.  Int J Cancer. 2008;  122 1859-1867
  • 47 Land CE, Saku T, Hayashi Y. et al . Incidence of salivary gland tumors among atomic bomb survivors, 1950–1987.  Evaluation of radiation-related risk. Radiat Res. 1996;  146 28-36
  • 48 Modan B, Chetrit A, Alfandary E. et al . Increased risk of salivary gland tumors after low-dose irradiation.  Laryngoscope. 1998;  108 1095-1097
  • 49 Harley NH, Albert RE, Shore RE. et al . Follow-up study of patients treated by x-ray epilation for tinea capitis.  Estimation of the dose to the thyroid and pituitary glands and other structures of the head and neck. Phys Med Biol. 1976;  21 631-642
  • 50 BEIR VII PHASE 2: Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. .Health Risks from Exposure to Low Levels of Ionizing Radiation. Washington D.C.: Nat. Academies Press http://www.nap.edu 2006
  • 51 Sadetzki S, Chetrit A, Lubina A. et al . Risk of thyroid cancer after childhood exposure to ionizing radiation for tinea capitis.  J Clin Endocrinol Metab. 2006;  91 4798-4804
  • 52 Lundell M, Hakulinen T, Holm LE. Thyroid cancer after radiotherapy for skin hemangioma in infancy.  Radiat Res.. 1994;  140 ((3)) 334-339
  • 53 Holmberg E, Wallgren A, Holm L-E. et al . Dose-response relationship for parathyroid adenoma after exposure to ionizing radiation in infancy.  Radiat Res. 2002;  158 418-423
  • 54 Rasmuson T, Damber L, Johansson L. et al . Increased incidence of parathyroid adenomas following x-ray treatment of benign diseases in the cervical spine in adult patients.  Clin Endocrinol. 2002;  57 731-734
  • 55 Shore RE, Moseson M, Xue X. et al . Skin cancer after x-ray treatment for scalp ringworm.  Radiat Res. 2002;  157 410-418
  • 56 Huda W. Effective doses to adult and pediatric patients.  Pediatr Radiol. 2002;  32 272-279
  • 57 Horn-Ross P, Ljung B, Morrow M. Environmental factors and the risk of salivary gland cancer.  Epidemiology. 1997;  8 414-419
  • 58 Fedirko PA, Buzunov VA. Risk assessment of eye diseases development in Chernobyl clean-up workers in remote period after the catastrophe.  International Journal of Radiation Medicine (Kiev). 2003;  5 211-216
  • 59 Rafnsson V, Olafsdottir E, Hrafnkelsson J. et al . Cosmic radiation increases the risk of nuclear cataract in airline pilots.  Arch Ophthalmol. 2005;  123 1102-1105
  • 60 Schmitz-Feuerhake I, Pflugbeil S. Strahleninduzierte Katarakte (Grauer Star) als Folge berufsmäßiger Exposition und beobachtete Latenzzeiten.  Strahlentelex Nr. , 456–457 v. 5.1.2006 1-7
  • 61 Worgul BV, Kundiev Y, Likhtarev I. et al . Use of subjective and nonsubjective methodologies to evaluate lens radiation damage in exposed populations – an overview.  Radiat Environ Biophys. 1996;  35 137-144
  • 62 Hall P, Granath F, Lundell M. et al . Lenticular opacities in individuals exposed to ionizing radiation in therapy.  Radiat Res. 1999;  152 ((2)) 190-195
  • 63 Klein BEK, Klein R, Linton KLP. et al . Diagnostic X-ray exposure and lens opacities: the Beaver Dam eye study.  Am J Public Health. 1993;  83 588-590
  • 64 Klein BEK, Klein R, Moss SE. Exposure to diagnostic x-rays and incident age-related eye disease.  Ophthalmic Epidemiol. 2000;  7 61-65
  • 65 Stein SC, Hurst RW, Sonnad SS. Meta-analysis of cranial CT scans in children. A mathematical model to predict radiation-induced tumors.  Pediatr Neurosurg. 2008;  44 448-457
  • 66 Blettner M, Schlehofer B, Samkange-Zeeb F. et al . Medical exposure to ionising radiation and the risk of brain tumors: Interphone study group, Germany.  Eur J Cancer. 2007;  43 1990-1998
  • 67 Kuni H, Schmitz-Feuerhake I, Dieckmann H. Mammography screening – neglected aspects of radiation risks.  Gesundheitswesen. 2003;  65 443-446
  • 68 Strahlenschutzkommission. . Bildgebende Diagnostik beim Kind – Strahlenschutz, Rechtfertigung und Effektivität.  Berichte der SSK Heft 53, Jahresbericht 2006 der SSK. http://www.ssk.de
  • 69 Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure.  N Engl J Med. 2007;  357 ((22)) 2277-2284

Korrespondenzadresse

Dr. rer. nat. I. Schmitz-Feuerhake

Univ.-Prof. i. R.

Grenzstraße 20

30627 Hannover

Email: ingesf@uni-bremen.de

    >