RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217362
Synthesis of Propargylamines by Three-Component Coupling of Aldehydes, Amines and Alkynes Catalyzed by Magnetically Separable Copper Ferrite Nanoparticles
Publikationsverlauf
Publikationsdatum:
12. Juni 2009 (online)

Abstract
An efficient three-component coupling of aldehydes, amines and alkynes has been developed to prepare propargylamines in nearly quantitative yields using magnetically separable copper ferrite nanoparticles as catalyst. Structurally divergent aldehydes and amines were converted into the corresponding propargylamines. The reaction does not require any co-catalyst.
Key words
copper ferrite nanoparticles - propargylamines - three-component coupling - reusability
- 1a
Pankhurst QA.Connolly J.Jones SK.Dobson J. J. Phys. D: Appl. Phys. 2003, 36: 167Reference Ris Wihthout Link - 1b
Perez JM.Simeone FJ.Saeki Y.Josephson L.Weissleder R. J. Am. Chem. Soc. 2003, 125: 10192Reference Ris Wihthout Link - 2a
Yoon TJ.Lee W.Oh YS.Lee JK. New J. Chem. 2003, 27: 227Reference Ris Wihthout Link - 2b
Stevens PD.Fan J.Gardimalla HMR.Yen M.Gao Y. Org. Lett. 2005, 7: 2085Reference Ris Wihthout Link - 2c
Stevens PD.Li G.Fan J.Yen M.Gao Y. Chem. Commun. 2005, 4435Reference Ris Wihthout Link - 3a
Armstrong RW.Combs AP.Tempst PA.Brown SD.Keating TA. Acc. Chem. Res. 1996, 29: 123Reference Ris Wihthout Link - 3b
Kamijo S.Yamamoto Y. J. Am. Chem. Soc. 2002, 124: 11940Reference Ris Wihthout Link - 4a
Ringdahl B. In The Muscarinic ReceptorsBrown JH. Humana Press; Clifton NJ: 1989.Reference Ris Wihthout Link - 4b
Miura M.Enna M.Okuro K.Nomura M. J. Org. Chem. 1995, 60: 4999Reference Ris Wihthout Link - 4c
Jenmalm A.Berts W.Li YL.Luthman K.Csoregh I.Hacksell U. J. Org. Chem. 1994, 59: 1139Reference Ris Wihthout Link - 4d
Dyker G. Angew. Chem. Int. Ed. 1999, 38: 1698Reference Ris Wihthout Link - 5a
Imada Y.Yuassa M.Nakamura SI.Murahashi SI. J. Org. Chem. 1994, 59: 2282Reference Ris Wihthout Link - 5b
Czerneck S.Valery JM. J. Carbohydr. Chem. 1990, 9: 767Reference Ris Wihthout Link - 6a
Li C.-J.Wei C. Chem. Commun. 2002, 268Reference Ris Wihthout Link - 6b
McNally JJ.Youngman MA.Dax SL. Tetrahedron Lett. 1998, 39: 967Reference Ris Wihthout Link - 6c
Zhang J.Wei C.Li C.-J. Tetrahedron Lett. 2003, 43: 5731Reference Ris Wihthout Link - 7
Fischer C.Carreria EM. Org. Lett. 2001, 3: 4319 - 8a
Wei C.Li C.-J. J. Am. Chem. Soc. 2003, 125: 9584Reference Ris Wihthout Link - 8b
Wei C.Li Z.Li CJ. Org. Lett. 2003, 5: 4473Reference Ris Wihthout Link - 8c
Li Z.Wei C.Chen L.Varma RS.Li CJ. Tetrahedron Lett. 2004, 45: 2443Reference Ris Wihthout Link - 9
Shi L.Tu YQ.Wang M.Zhang FM.Fan CA. Org. Lett. 2004, 6: 1001 - 10a
Li Z.Li CJ. Org. Lett. 2004, 6: 4997Reference Ris Wihthout Link - 10b
Lo K.-YV.Liu Y.Wong M.-K.Che C.-M. Org. Lett. 2006, 8: 1529Reference Ris Wihthout Link - 10c
Fernandez E.Maeda K.Hooper MW.Brown JM. Chem. Eur. J. 2000, 6: 1840Reference Ris Wihthout Link - 10d
Gommermann N.Knochel P. Chem. Commun. 2005, 4175Reference Ris Wihthout Link - 10e
Bisai A.Singh VK. Org. Lett. 2006, 8: 2405Reference Ris Wihthout Link - 11
Choudary BM.Sridhar C.Kantam ML.Sreedhar B. Tetrahedron Lett. 2004, 45: 7319 - 12
Kantam ML.Prakash BV.Reddy CRV.Sreedhar B. Synlett 2005, 15: 2329 - 13
Kantam ML.Balasubrahmanyam V.Kumar KBS.Venkanna GT. Tetrahedron Lett. 2007, 48: 7332 - 14a
Choudary BM.Kantam ML.Ranganath KVS.Mahender K.Sreedhar B. J. Am. Chem. Soc. 2004, 126: 3396Reference Ris Wihthout Link - 14b
Choudary BM.Ranganath KVS.Pal U.Kantam ML.Sreedhar B. J. Am. Chem. Soc. 2005, 127: 13167Reference Ris Wihthout Link - 14c
Choudary BM.Ranganath KVS.Yadav J.Kantam ML. Tetrahedron Lett. 2005, 46: 1369Reference Ris Wihthout Link - 14d
Kantam ML.Laha S.Yadav J.Choudary BM.Sreedhar B. Adv. Synth. Catal. 2006, 348: 867Reference Ris Wihthout Link - 14e
Kantam ML.Laha S.Yadav J.Sreedhar B. Tetrahedron Lett. 2006, 47: 6213Reference Ris Wihthout Link - 15a
Nedkov I.Vandenberghe RE.Marinova Ts.Thailhades Ph.Merodiiska T.Avramova I. Appl. Surf. Sci. 2006, 253: 2589Reference Ris Wihthout Link - 15b
Nordhei C.Ramstad AL.Nicholson DG. Phys. Chem. Chem. Phys. 2008, 10: 1053Reference Ris Wihthout Link
References and Notes
Typical procedure for the preparation of CuFe 2 O 4 nanoparticles: CuFe2O4 nanoparticles were prepared by a soft chemical method - co-precipitation of Fe²+ and Cu²+ cations in strong alkaline media at room temperature.¹5a Dilute water solutions of FeCl2˙4H2O and CuCl2˙2H2O mixed in the ratio 2:1 with intensive stirring were used for that purpose. In a water solution, the chlorides of these elements exist in a complex form. When a concentrated solution of NaOH with pH 13 is added, the complexes turn into hydroxides and a black precipitate of CuFe2O4 is produced. After decanting, the precipitate is rinsed with distilled water until pH 7 and then dried.
17Typical procedure for A ³ coupling reaction: A mixture of benzaldehyde (1 mmol), piperidine (1.2 mmol), phenyl-acetylene (1.3 mmol) and CuFe2O4 nanoparticles (15 mg, 6.5 mol% of copper) in toluene (4 mL) was stirred in a round-bottomed flask at 80 ˚C under N2 atmosphere. After completion of the reaction, which was monitored by TLC, the reaction mixture was magnetically concentrated with the aid of a magnet to separate the catalyst and the catalyst was washed several times with Et2O. The reaction mixture was concentrated under reduced pressure to afford the crude product which, after chromatography on silica gel, gave the corresponding propargylamine, N-(1,3-diphenyl-2-propyn-yl)piperidine.¹H NMR (200 MHz, CDCl3): δ = 7.64-7.56 (m, 2 H), 7.50-7.42 (m, 2 H), 7.36-7.18 (m, 6 H), 4.76 (s, 1 H), 2.55-2.52 (m, 4 H), 1.63-1.54 (m, 4 H), 1.51-1.42 (m, 2 H). ESI MS: m/z = 276 (M + H)+.