RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217380
Asymmetric Synthesis of Functionalized 3,4-Dihydronaphthalenes via an Organocatalytic Domino Nitroalkane-Michael/Aldol Condensation Reaction
Publikationsverlauf
Publikationsdatum:
15. Juni 2009 (online)

Abstract
An organocatalytic domino nitroalkane-Michael addition/aldol condensation reaction has been developed. This process provides an efficient asymmetric synthesis of trisubstituted 3,4-dihydronaphthalenes in moderate to good yields (40-75%) and high stereoselectivities (de >98%, ee = 91 to >99%).
Key words
dihydronaphthalenes - organocatalysis - domino reaction - Michael addition - aldol condensation
- For recent reviews on organocatalysis, see:
- 1a
Berkessel A.Gröger H. Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2005.Reference Ris Wihthout Link - 1b
Dalko PI. Enantioselective Organocatalysis Wiley-VCH; Weinheim: 2007.Reference Ris Wihthout Link - 1c Special issue on organocatalysis: Chem.
Rev.
2007,
107:
issue 12
Reference Ris Wihthout Link
- 1d
Pellissier H. Tetrahedron 2007, 63: 9267Reference Ris Wihthout Link - 1e
Dondoni A.Massi A. Angew. Chem. Int. Ed. 2008, 47: 4638 ; Angew. Chem. 2008, 120, 4716Reference Ris Wihthout Link - 1f
Kotsuki H.Ikishima H.Okuyama A. Heterocycles 2008, 75: 493Reference Ris Wihthout Link - 1g
Kotsuki H.Ikishima H.Okuyama A. Heterocycles 2008, 75: 757Reference Ris Wihthout Link - 1h
Enders D.Narine AA. J. Org. Chem. 2008, 73: 7857Reference Ris Wihthout Link - 1i
Melchiorre P.Marigo M.Carlone A.Bartoli G. Angew. Chem. Int. Ed. 2008, 47: 6138 ; Angew. Chem. 2008, 120, 6232Reference Ris Wihthout Link - For recent reviews on domino reactions, see:
- 2a
Tietze LF. Chem. Rev. 1996, 96: 115Reference Ris Wihthout Link - 2b
Tietze LF.Brasche G.Gericke K. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006.Reference Ris Wihthout Link - 2c
Pellissier H. Tetrahedron 2006, 62: 1619Reference Ris Wihthout Link - 2d
Pellissier H. Tetrahedron 2006, 62: 2143Reference Ris Wihthout Link - 2e
Nicolaou KC.Edmonds DJ.Bulger PG. Angew. Chem. Int. Ed. 2006, 45: 7134 ; Angew. Chem. 2006, 118, 7292Reference Ris Wihthout Link - 2f
Chapman CJ.Frost CG. Synthesis 2007, 1Reference Ris Wihthout Link - For reviews on organocatalytic domino reactions, see:
- 3a
Enders D.Grondal C.Hüttl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570 ; Angew. Chem. 2007, 119, 1590Reference Ris Wihthout Link - 3b
Yu X.Wang W. Org. Biomol. Chem. 2008, 6: 2037Reference Ris Wihthout Link - For selected examples of organocatalytic domino reactions, see:
- 4a
Yang JW.Fonseca MTH.List B. J. Am. Chem. Soc. 2005, 127: 15036Reference Ris Wihthout Link - 4b
Huang Y.Walji AM.Larsen CH.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 15051Reference Ris Wihthout Link - 4c
Enders D.Hüttl MRM.Grondal C.Raabe G. Nature 2006, 441: 861Reference Ris Wihthout Link - 4d
Wang W.Li H.Wang J.Zu L. J. Am. Chem. Soc. 2006, 128: 10354Reference Ris Wihthout Link - 4e
Enders D.Hüttl MRM.Runsink J.Raabe G.Wendt B. Angew. Chem. Int. Ed. 2007, 46: 467 ; Angew. Chem. 2007, 119, 471Reference Ris Wihthout Link - 4f
Enders D.Narine AA.Benninghaus TR.Raabe G. Synlett 2007, 1667Reference Ris Wihthout Link - 4g
Carlone A.Cabrera S.Marigo M.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 1101 ; Angew. Chem. 2007, 119, 1119Reference Ris Wihthout Link - 4h
Hayashi Y.Okano T.Aratake S.Hazelard D. Angew. Chem. Int. Ed. 2007, 46: 4922 ; Angew. Chem. 2007, 119, 5010Reference Ris Wihthout Link - 4i
Vicario JL.Reboredo L.Badía D.Carrillo L. Angew. Chem. Int. Ed. 2007, 46: 5168 ; Angew. Chem. 2007, 119, 5260Reference Ris Wihthout Link - 4j
Rueping M.Sugiono E.Merino E. Angew. Chem. Int. Ed. 2008, 47: 3046 ; Angew. Chem. 2008, 120, 3089Reference Ris Wihthout Link - 4k
Enders D.Wang C.Bats JW. Angew. Chem. Int. Ed. 2008, 47: 7539 ; Angew. Chem. 2008, 120, 7649Reference Ris Wihthout Link - 4l
Zhao G.-L.Rios R.Vesley J.Eriksson L.Córdova A. Angew. Chem. Int. Ed. 2008, 47: 8468 ; Angew. Chem. 2008, 120, 8596Reference Ris Wihthout Link - 4m
Lu M.Zhu D.Lu Y.Hou Y.Tan B.Zhong G. Angew. Chem. Int. Ed. 2008, 47: 10187 ; Angew. Chem. 2008, 120, 10341Reference Ris Wihthout Link - 4n
Enders D.Hüttl MRM.Raabe G.Bats JW. Adv. Synth. Catal. 2008, 350: 267Reference Ris Wihthout Link - 4o
Kotame P.Hong B.-C.Liao J.-H. Tetrahedron Lett. 2009, 50: 704Reference Ris Wihthout Link - 4p
Franzén J.Fisher A. Angew. Chem. Int. Ed. 2009, 48: 787 ; Angew. Chem. 2009, 121, 801Reference Ris Wihthout Link - For reviews on organocatalytic Michael additions, see:
- 5a
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701Reference Ris Wihthout Link - 5b
Sulzer-Mossé S.Alexakis A. Chem. Commun. 2007, 3123Reference Ris Wihthout Link - 5c
Vicario JL.Badía D.Carrillo L. Synthesis 2007, 2065Reference Ris Wihthout Link - 5d
Almaºi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299Reference Ris Wihthout Link - For selected examples of organocatalytic nitroalkane-Michael additions with enals or enones as electrophile, see:
- 6a
Hanessian S.Pham V. Org. Lett. 2000, 2: 2975Reference Ris Wihthout Link - 6b
Corey EJ.Zhang F.-Y. Org. Lett. 2000, 2: 4257Reference Ris Wihthout Link - 6c
Halland N.Hazell RG.Jørgensen KA. J. Org. Chem. 2002, 67: 8331Reference Ris Wihthout Link - 6d
Tsogoeva SB.Jagtap SB.Ardemasova ZA.Kalikhevich VN. Eur. J. Org. Chem. 2004, 4014Reference Ris Wihthout Link - 6e
Vukalya B.Varga S.Csámpai A.Soós T. Org. Lett. 2005, 7: 1967Reference Ris Wihthout Link - 6f
Mitchell CET.Brenner SE.Ley SV. Chem. Commun. 2005, 5346Reference Ris Wihthout Link - 6g
Prieto A.Halland N.Jørgensen KA. Org. Lett. 2005, 7: 3897Reference Ris Wihthout Link - 6h
Ooi T.Takada S.Fujioka S.Maruoka K. Org. Lett. 2005, 7: 5143Reference Ris Wihthout Link - 6i
Mitchell CET.Brenner SE.García-Fortanet J.Ley SV. Org. Biomol. Chem. 2006, 4: 2039Reference Ris Wihthout Link - 6j
Hanessian S.Shao Z.Warrier JS. Org. Lett. 2006, 8: 4787Reference Ris Wihthout Link - 6k
Tsogoeva SB.Jagtap SB.Ardemasova ZA. Tetrahedron: Asymmetry 2006, 17: 989Reference Ris Wihthout Link - 6l
Gotoh H.Ishikawa H.Hayashi Y. Org. Lett. 2007, 9: 5307Reference Ris Wihthout Link - 6m
Hojabri L.Hartikka L.Moghaddam FM.Arvidsson PI. Adv. Synth. Catal. 2007, 349: 740Reference Ris Wihthout Link - 6n
Vakulya B.Varga S.Soós T. J. Org. Chem. 2008, 73: 3475Reference Ris Wihthout Link - 6o
Li P.Wang Y.Liang X.Ye J. Chem. Commun. 2008, 3302Reference Ris Wihthout Link - 6p
Zhong S.Chen Y.Petersen JL.Akhmedov NG.Shi X. Angew. Chem. Int. Ed. 2009, 48: 1279 ; Angew. Chem. 2009, 121, 1305Reference Ris Wihthout Link - For selected examples of organocatalytic domino reactions involving nitroalkane-Michael additions with enals or enones as electrophiles, see refs 4c, 4e, 4g, 4n, 4o, and:
- 7a
Reyes E.Jiang H.Milelli A.Elsner P.Hazell RG.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 9202 ; Angew. Chem. 2007, 119, 9362Reference Ris Wihthout Link - 7b
Zhao G.-L.Ibrahem I.Dziedzic P.Sun J.Bonneau C.Córdova A. Chem. Eur. J. 2008, 14: 10007Reference Ris Wihthout Link - 7c
Lv J.Zhang J.Lin Z.Wang Y. Chem. Eur. J. 2009, 15: 972Reference Ris Wihthout Link - 7d
Zu L.Zhang S.Xie H.Wang W. Org. Lett. 2009, 11: 1627Reference Ris Wihthout Link - 8 For a review on organocatalytic aldol
reactions, see:
Guillena G.Nájera C.Ramón DJ. Tetrahedron: Asymmetry 2007, 18: 2249 - For selected examples of organocatalytic intramolecular aldol reactions, see:
- 9a
Pidathala C.Hoang L.Vignola N.List B. Angew. Chem. Int. Ed. 2003, 42: 2785 ; Angew. Chem. 2003, 115, 2891Reference Ris Wihthout Link - 9b
Kriis K.Kanger T.Laars M.Müürisepp A.-M.Pehk T.Lopp M. Synlett 2006, 1699Reference Ris Wihthout Link - 9c
Enders D.Niemeier O.Straver L. Synlett 2006, 3399Reference Ris Wihthout Link - 9d
Hayashi Y.Sekiziwa H.Yamaguchi J.Gotoh H. J. Org. Chem. 2007, 72: 6493Reference Ris Wihthout Link - 9e
Yoshitomi Y.Makino K.Hamada Y. Org. Lett. 2007, 9: 2457Reference Ris Wihthout Link - For selected examples of organocatalytic domino reactions involving intramolecular aldol reactions, see refs 4c-g, 4n, 4o and:
- 10a
Halland N.Abruel PS.Jørgensen KA. Angew. Chem. Int. Ed. 2004, 43: 1272 ; Angew. Chem. 2004, 116, 1292Reference Ris Wihthout Link - 10b
Brandau B.Maerten E.Jørgensen KA.
J. Am. Chem. Soc. 2006, 128: 14986Reference Ris Wihthout Link - 10c
Govender T.Hojbri L.Moghaddam FM.Arvidsson PI. Tetrahedron: Asymmetry 2006, 17: 1763Reference Ris Wihthout Link - 10d
Wang J.Li H.Xie H.Zu L.Shen X.Wang W. Angew. Chem. Int. Ed. 2007, 46: 9050 ; Angew. Chem. 2007, 119, 9208Reference Ris Wihthout Link - 10e
Li H.Wang J.Xie H.Zu L.Jiang W.Duesler EN.Wang W. Org. Lett. 2007, 9: 965Reference Ris Wihthout Link - 10f
Hong B.-C.Nimje RY.Sadani AA.Liao J.-H. Org. Lett. 2008, 10: 2345Reference Ris Wihthout Link - 10g
Penon O.Carlone A.Mazzanti A.Locatelli M.Sambri L.Bartoli G.Melchiorre P. Chem. Eur. J. 2008, 14: 4788Reference Ris Wihthout Link - For reviews on diphenylprolinol TMS-ether, see:
- 11a
Palomo C.Mielgo A. Angew. Chem. Int. Ed. 2006, 45: 7876 ; Angew. Chem. 2006, 118, 8042Reference Ris Wihthout Link - 11b
Mielgo A.Palomo C. Chem. Asian J. 2008, 922Reference Ris Wihthout Link
References and Notes
Compound 3c: CCDC-725063 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallo-graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
13
General Procedure:
To a solution of 2-(nitromethyl)-benzaldehyde (1;
1.0 mmol) and α,β-unsatured aldehyde
2 (1.1 mmol, 1.1 equiv) in Et2O
(2 mL), was added (S)-di-phenylprolinol
TMS-ether [(S)-4;
0.05 mmol, 5 mol%]. The reaction mixture was stirred
at the temperature and for the time displayed in Table
[²]
.
Workup A: Direct
purification of the reaction mixture by flash chromatography afforded
3,4-dihydronaphthalenes 3 (pentane-Et2O,
2-10:1).
Workup B: Direct suction through a funnel
followed by washing with Et2O afforded 3c.
Workup
C: The reaction mixture was suctioned through a funnel and washed
with Et2O. Purification of the obtained solid by flash
chromatography (silica gel, pentane-Et2O, 1:3)
afforded 3d.
(3
R
,4
S
)-3-(2-Methoxyphenyl)-4-nitro-3,4-dihydro-naphthalene-2-carbaldehyde
(3c; Figure 2): Isolated as a colorless solid (206 mg, 67%).
The ee (>99%) was determined by HPLC on a chiral
stationary phase [Chiralcel OD; n-heptane-i-PrOH (8:2); 1.0 mL/min, t
R
= 9.04 min(major),
10.29 min (minor, based on the racemic mixture)]; mp 182 ˚C; [α]D
²0 -482
(c 1.0, CHCl3); IR (KBr): 3310
(w), 3000 (w), 2946 (w), 2823 (m), 2728 (w), 2324 (w), 2268 (w),
2184 (w), 2048 (w), 1989 (w), 1942 (w), 1735 (w), 1701 (w), 1663
(vs), 1627 (s), 1599 (m), 1570 (m), 1538 (vs), 1489 (s), 1460 (s),
1435 (m), 1399 (s), 1358 (s), 1327 (m), 1289 (s), 1273 (s), 1245
(vs), 1192 (w), 1158 (vs), 1105 (s), 1052 (s), 1028 (s), 961 (w),
924 (s), 855 (m), 819 (m), 755 (vs), 704 (s) cm-¹; ¹H
NMR (400 MHz, CDCl3): δ = 3.95 (s,
3 H, OCH3), 5.48 (br s, J = <2
Hz, 1 H, H-3), 5.62 (br s, J = <2
Hz, 1 H, H-4), 6.60 (dd, J = 7.6,
1.6 Hz, 1 H, H-6′), 6.65 (td, J = 7.6, 0.8 Hz,
1 H, H-5′), 6.91 (d, J = 7.6
Hz, 1 H, H-3′), 7.19 (td, J = 7.6,
1.6 Hz, 1 H, H-4′), 7.36-7.42
(m, 2 H, H-5,7), 7.48-7.54 (m, 2 H, H-6,8),
7.68 (s, 1 H, H-1), 9.73 (s, 1 H, CHO); ¹³C
NMR (101 MHz, CDCl3): δ = 34.5 (C-3),
55.6 (OCH3), 86.4 (C-4), 110.8 (C-3′), 120.3
(C-5′), 122.5 (C-1′), 126.9 (C-6′), 128.0
(C-9), 129.0 (C-4′), 129.4 (C-8), 130.9 (C-6), 131.3 (C-5),
131.6 (C-7), 131.7 (C-10), 137.8 (C-2), 144.1 (C-1), 156.7 (C-2′),
190.7 (CHO); MS (EI, 70 eV): m/z (%) = 309.4 (5.8)
[M+], 277.3 (2.2), 263.3 (74),
245.3 (50), 235.4 (100), 231.4 (24), 202.3 (65), 189.3 (19), 176.3
(2.7), 165.3 (8.8), 155.3 (7.5), 152.3 (2.7), 127.3 (9.5), 117.6
(9.1), 101.3 (19), 94.8 (7.2), 83.1 (4.7), 77.4 (10), 57.4 (2.2),
51.4 (4.0), 43.3 (2.2); Anal. Calcd for C18H15NO4:
C, 69.89; H, 4.89; N, 4.53. Found: C, 69.92; H, 4.94; N, 4.50.

Figure 2