RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219436
Synthesis of a Deoxyxylopuromycin Analogue
Publikationsverlauf
Publikationsdatum:
23. Februar 2010 (online)

Abstract
N6-Bis-demethylated deoxyxylopuromycin was synthesized over six steps in 56% overall yield. The key steps are Mitsunobu reaction with DPPA and a Staudinger-Vilarrasa coupling.
Key words
Antibiotic - ribosome - azide - Mitsunobu - Staudinger-Vilarrasa
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1
Porter JN.Hewitt RI.Hesseltine CW.Krupka G.Lowery J.Wallace WS.Bohonos N.Williams JH. Antibiot. Chemother. 1952, 2: 409 - 2a
Yarmolinski MD.de la Haba GL. Proc. Natl. Acad. Sci. U.S.A. 1959, 45: 1721Reference Ris Wihthout Link - 2b
Nathans D.Neidle A. Nature (London) 1963, 197: 1076Reference Ris Wihthout Link - 2c
Gilbert W. J. Mol. Biol. 1963, 6: 389Reference Ris Wihthout Link - 3a
Baker BR.Schaub RE.Joseph JP.Williams JH. J. Am. Chem. Soc. 1955, 77: 12Reference Ris Wihthout Link - 3b
Suami T.Tadano K.Ayabe M.Emori Y. Bull. Chem. Soc. Jpn. 1978, 51: 855Reference Ris Wihthout Link - 3c
Okruszek A.Verkade JG. J. Med. Chem. 1979, 22: 882Reference Ris Wihthout Link - 3d
Ozols AM.Azhayev AV.Dyatkina NB.Krayevsky AA. Synthesis 1980, 557Reference Ris Wihthout Link - 3e
Ozols AM.Azhayev AV.Krayevsky AA.Ushakov AS.Gnuchev NV.Gottikh BP. Synthesis 1980, 559Reference Ris Wihthout Link - 3f
Lee H.Fong KL.Vince R. J. Med. Chem. 1981, 24: 304Reference Ris Wihthout Link - 3g
Vince R.Daluge S.Brownwell J. J. Med. Chem. 1986, 29: 2400Reference Ris Wihthout Link - 3h
McDonald FE.Gleason MM. J. Am. Chem. Soc. 1996, 118: 6648Reference Ris Wihthout Link - 3i
Botta O.Strazewski P. Nucleosides Nucleotides 1999, 18: 721Reference Ris Wihthout Link - 3j
Nguyen-Trung NQ.Botta O.Terenzi S.Strazewski P. J. Org. Chem. 2003, 68: 2038Reference Ris Wihthout Link - 3k
Chapuis H.Strazewski P. Tetrahedron 2006, 62: 12108Reference Ris Wihthout Link - 3l
Takatsuki K.Ohgushi S.Kohmoto S.Kishikawa K.Yamamoto M. Nucleosides, Nucleotides Nucleic Acids 2006, 25: 719Reference Ris Wihthout Link - 3m
Charafeddine A.Dayoub W.Chapuis H.Strazewski P. Chem. Eur. J. 2007, 13: 5566Reference Ris Wihthout Link - 3n
Okuda K.Hirota T.Kingery DA.Nagasawa H. J. Org. Chem. 2009, 74: 2609Reference Ris Wihthout Link - 4
Vince R.Lee H.Narang AS.Shirota FN. J. Med. Chem. 1981, 24: 1511 - 5a
Azzam ME.Algranati ID. Proc. Natl. Acad. Sci. U.S.A. 1973, 70: 3866Reference Ris Wihthout Link - 5b
Kingery DA.Pfund E.Voorhees RM.Okuda K.Wohlgemuth I.Kitchen DE.Rodnina MV.Strobel SA. Chem. Biol. 2008, 15: 493Reference Ris Wihthout Link - 6a
Sievers A.Beringer M.Rodina MV.Wolfenden R. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 7897Reference Ris Wihthout Link - 6b
Schroeder GK.Wolfenden R. Biochemistry 2007, 46: 4037Reference Ris Wihthout Link - 6c
Wohlgemuth I.Brenner S.Beringer M.Rodnina MV. J. Biol. Chem. 2008, 283: 32229Reference Ris Wihthout Link - 6d
Johansson M.Bouakaz E.Lovmar M.Ehrenberg M. Mol. Cell. 2008, 30: 589Reference Ris Wihthout Link - 7
Kelley JL.Miller CA.Schaeffer HJ. J. Pharm. Sci. 1981, 70: 1169 - 8
Koch M.Huang Y.Spinzl M. Angew. Chem. Int. Ed. 2008, 47: 7242 - 9a
Schmeing TM.Huang KS.Kitchen DE.Strobel SA.Steitz TA. Mol. Cell. 2005, 20: 437Reference Ris Wihthout Link - 9b
Schmeing TM.Huang KS.Strobel SA.Steitz TA. Nature (London) 2005, 438: 520Reference Ris Wihthout Link - 10
Weinger JS.Parnell KM.Dorner S.Green R.Strobel SA. Nat. Struct. Mol. Biol. 2004, 11: 1101 - 11a
Das GK.Bhattacharyya D.Burma DP. J. Theor. Biol. 1999, 200: 193Reference Ris Wihthout Link - 11b
Dorner S.Panuschka C.Schmid W.Barta A. Nucleic Acids Res. 2003, 31: 6536Reference Ris Wihthout Link - 11c
Changalov MM.Ivanova GD.Rangelov MA.Acharya P.Acharya S.Minakawa N.Foeldesi A.Stoineva IB.Yomtova VM.Roussev CD.Matsuda A.Chattopadhyaya J.Petkov DD. ChemBioChem 2005, 6: 992Reference Ris Wihthout Link - 11d
Rodnina MV.Beringer M.Wintermeyer W. Trends Biochem. Sci. 2007, 32: 20Reference Ris Wihthout Link - 12a
Nissen P.Hansen J.Ban N.Moore PB.Steitz TA. Science 2000, 289: 920Reference Ris Wihthout Link - 12b
Michel BY.Strazewski P. Chem. Eur. J. 2009, 15: 6244Reference Ris Wihthout Link - 13
Koizumi F.Oritani T.Yamashita K. Agric. Biol. Chem. 1990, 54: 3093 - 14
Chladek S.Sprinzl M. Angew. Chem., Int. Ed. Engl. 1985, 24: 371 - 15
Michel BY.Krishnakumar KS.Strazewski P. Synlett 2008, 2461 - 16a
Mitsunobu O.Yamada Y. Bull. Chem. Soc. Jpn. 1967, 40: 2380Reference Ris Wihthout Link - 16b
Mitsunobu O. Synthesis 1981, 1Reference Ris Wihthout Link - 16c
Yoshimura Y.Kitano K.Yamada K.Satoh H.Watanabe M.Miura S.Sakata S.Sasaki T.Matsuda A. J. Org. Chem. 1997, 62: 3140Reference Ris Wihthout Link - 16d
Broggi J.Kumamoto H.Berteina-Raboin S.Nolan SP.Agrofoglio LA. Eur. J. Org. Chem. 2009, 1880Reference Ris Wihthout Link - 17
Kim J.Yoon D.Lee SH.Ko S.Lee Y.Zong K. Bull. Korean Chem. Soc. 2006, 27: 1910
References and Notes
5′-
O
-(
tert
-Butyldiphenylsilyl)-2′-deoxyadenosine
(6)
TBDPSCl (1.6 g, 5.7 mmol) was added to 5 (1.2 g, 4.8 mmol) in dry pyridine (24
mL), and the solution was stirred for 18 h at r.t. under N2.
H2O (2 mL) was added, stirring was continued for 30 min,
and the volatiles were evaporated. The residue was partitioned (H2O-EtOAc),
and the organic phase was washed with H2O (2 × 50
mL) and brine, then dried (Na2SO4). The volatiles
were evaporated, and the residue was column chromatographed (step
gradient from EtOAc-cyclohexane = 1:1 to 1:0 and
then to EtOAc-MeOH = 95:5) to yield 6 (2.0 g, 88%). R
f
= 0.33 (EtOAc-MeOH = 9:1). ¹H
NMR (300 MHz, CDCl3): δ = 1.06 [s,
9 H, SiC(CH3)3], 2.53 (ddd, 1 H, J = 13.4,
6.2, 4.0 Hz, HA2′), 2.75 (td, 1 H, J = 13.1,
6.4 Hz, HB2′), 3.79-3.98 (m, 2 H, H5′5′′), 4.71-4.75
(m, 1 H, H3′), 5.84 (s, 2 H, NH2), 6.46 (t,
1 H, J = 6.5
Hz, H1′), 7.31-7.45 (m, 6 H, ar), 7.62-7.65
(m, 4 H, ar), 8.02 (s, 1 H, H2), 8.29 (s, 1 H, H8). ¹³C
NMR (70 MHz, CDCl3 + CD3OD): δ = 18.7
(SiC), 26.3 [(CH3)3], 40.6
(C2′), 63.4 (C5′5′′), 70.6 (C3′),
84.0 (C1′), 87.1 (C4′), 118.8 (C5), 127.3 (p-ar), 129.4, 129.4 (o-ar),
132.1, 132.4 (i-ar), 134.9, 135.1 (m-ar), 138.2 (C2), 148.4 (C4), 152.1
(C6), 155.1 (C8). MS (ESI+): m/z = 490.1 [MH]+
6-
N
-[(di-
n
-Butylamino)methylene]-5′-
O
-(
tert
-butyl-diphenylsilyl)-2′-deoxyadenosine
(7)
Compound 6 (600 mg, 1.3 mmol) was dissolved in MeOH
(5 mL). N,N-Di-n-butylformamide dimethylacetal (600
mg, 2.6 mmol) was added, and the solution was stirred for 2 h at
r.t. The volatiles were removed under reduced pressure, and the residue
was purified using silica gel column chromatog-raphy (EtOAc-MeOH = 100:0
to 95:5 step gradient) to yield 7 (750
mg, 98%). R
f
= 0.45 (CH2Cl2-MeOH = 9.5:0.5). ¹H NMR
(300 MHz, CDCl3): δ = 0.82-0.88
(m, 6 H, 2 × NCH2CH2CH2CH3),
0.96 [(s, 9 H, SiC(CH3)3],
1.23-133 (m, 4 H, 2 × NCH2CH2CH2CH3),
1.49-1.62 (m, 4 H, 2 × NCH2CH2CH2CH3),
2.46 (ddd, J = 13.2,
6.0, 3.5 Hz, 1 H, HA2′), 2.57-2.66
(m, 1 H, HB2′), 3.28-3.34 (m, 2 H, NCH2CH2CH2CH3),
3.59-3.65 (m, 2 H, NCH2CH2CH2CH3), 3.72-3.85
(m, 2 H, H5′5′′), 4.05-4.09
(m, 1 H, H4′), 4.64-4.68 (m, 1 H, H3′),
6.44 (t, J = 6.6
Hz, 1 H, H1′), 7.25-7.32 (m, 6 H, ar), 7.53-7.58
(m, 4 H, ar), 8.02 (s, 1 H, H2), 8.41 (s, 1 H, H8), 8.91 (s, 1 H,
CH=N). ¹³C NMR (70 MHz, CDCl3): δ = 13.6
(NCH2CH2CH2CH3), 13.8 (NCH2CH2CH2CH3),
19.1 (SiC), 19.6 (NCH2CH2CH2CH3), 20.1
(NCH2CH2CH2CH3), 26.8 [(CH3)3],
29.1 (NCH2CH2CH2CH3),
30.9 (NCH2CH2CH2CH3),
40.6 (C2′), 45.1 (NCH2CH2CH2CH3),
51.7 (NCH2CH2CH2CH3),
64.0 (C5′5′′), 71.7 (C3′), 84.01
(C1′), 87.0 (C4′), 126.1 (C5), 127.7, 129.7, 129.8,
132.7, 132.8, 135.4, 135.4 (Ar), 139.7 (C2), 151.0 (C4), 152.3 (C6),
158.3 (C8), 159.9 (CH=N). HRMS (ESI+): m/z calcd: 629.3635 [MH]+;
found: 629.3636.
9-[3′-Azido-5′-
O
-(
tert
-butyldiphenylsilyl)-2′,3′-dideoxy-β-
d
-xylofuranosyl)-6-
N
-[(di-
n
-butylamino)methylene]-adenine
(8)
To a THF (1.9 mL) solution of 7 (69
mg, 0.11 mmol) and Ph3P (90 mg, 0.33 mmol), a mixture
of DIAD (71 µL, 0.33 mmol) and DPPA (65 µL, 0.33
mmol) in THF (500 µL) was added dropwise at 0 ˚C
under Ar. After 7 h of stirring at r.t., EtOH (1 mL) was added,
and the solution was stirred for 30 min. After evaporation of all
the volatiles, the oily residue was purified by silica gel column
chromatography (EtOAc-cyclohexane = 3:7 to 8:2
step gradient). Ph3PO contained in the chromatographed
product was removed by precipitation from cold Et2O (3
h, 4 ˚C). After the second precipitation the filtrate
was evaporated to yield 8 (61 mg, 85%). R
f
= 0.4 (CH2Cl2-MeOH = 9.5:0.5). ¹H
NMR (300 MHz, CDCl3): δ = 0.94
(2 t, J = 7.3,
7.3 Hz, 6 H, 2 × NCH2CH2CH2CH3), 1.09 [s,
9 H, SiC(CH3)3], 1.21-1.45
(m, 4 H, 2 × NCH2CH2CH2CH3),
1.58-1.71 (m, 4 H, 2 × NCH2CH2CH2CH3),
2.54 (dd, J = 14.8,
0.9 Hz, 1 H, HA2′), 2.83 (ddd, J = 14.0,
7.9, 6.0 Hz, 1 H, HB2′′), 3.38 (t, J = 7.3 Hz,
2 H, NCH2CH2CH2CH3),
3.67-3.75 (m, 2 H, NCH2CH2CH2CH3),
3.96-4.07 (m, 2 H, H5′5′′),
4.19-4.24 (m, 1 H, H4′), 4.41-4.44 (m,
1 H, H3′), 6.41 (dd, J = 7.9,
2.1 Hz, 1 H, H1′), 7.42-7.70 (m, 10 H, ar), 8.19
(s, 1 H, H2), 8.52 (s, 1 H, H8), 9.02 (s, 1 H, CH=N). ¹³C
NMR (70 MHz, CDCl3): δ = 13.6
(NCH2CH2CH2CH3), 13.9 (NCH2CH2CH2CH3),
19.1 (SiC), 19.7 (NCH2CH2CH2CH3), 20.1
(NCH2CH2CH2CH3), 26.8 [(CH3)3],
29.2 (NCH2CH2CH2CH3),
30.9 (NCH2CH2CH2CH3),
39.0 (C2′), 45.1 (NCH2CH2CH2CH3),
51.8 (NCH2CH2CH2CH3),
61.5 (C3′), 61.9 (C5′5′′), 83.1
(C1′), 83.1 (C4′), 125.8 (C5), 125.8, 127.8, 128.3,
131.8, 131.9, 132.0, 135.4 (ar), 139.8 (C2), 151.0 (C4), 156.6 (C6),
157.3 (C8), 158.4 (CH=N). HRMS (ESI+): m/z calcd: 654.3700 [MH]+;
found: 654.3700.
9-[
5
′
-O-
(
tert
-Butyldiphenylsilyl)-3′-[
N
-(9-fluorenyl)-methoxycarbonyl-
O
-methyl-
l
-tyrosyl]amido
-
2′,3′-dideoxy-β-
d
-xylofuranosyl)-6-
N
-[(di-
n
-butylamino)-methylene]adenine
(9)
N-Fmoc-O-Me-l-Tyr (45
mg, 0.11 mmol) and HOBt (18 mg, 0.11 mmol) were co-evaporated with
anhyd THF (3 × 1 mL). The mixture was
dissolved in anhyd THF (1 mL) and cooled down to 0 ˚C
under N2 for 10 min. Diisopropylcarbodiimide (16 µL,
0.10 mmol) was added, and the reaction mixture was stirred at the
same temperature for 15 min and then 10 min at r.t. Me3P
(1 M in THF, 160 µL, 0.16 mmol) was added to 8 (52.6 mg, 0.08 mmol) in THF (1 mL) and
stirred at r.t. for 5 min. The amino acid solution was added to
the iminophosphorane solution and stirred for 4 h at r.t. The reaction
mixture was concentrated under reduced pressure and dissolved in
EtOAc (20 mL) and then washed with sat. aq NaHCO3 solution
(15 mL) and H2O (2 × 20 mL). The
organic layer was dried over Na2SO4, evaporated,
and the residue was purified by silica gel column chromatog-raphy
(CH2Cl2-MeOH = 99.5: 0.5
to 98:2 step gradient) to yield 9 (70 mg, 85%). R
f
= 0.45
(CH2Cl2-MeOH = 9.5:0.5). ¹H
NMR (300 MHz, CDCl3): δ = 0.81-0.91
(m, 6 H, 2 × NCH2CH2CH2CH3),
1.06, 1.07 [2 s, 9 H, SiC(CH3)3],
1.22-1.39 (m, 4 H, 2 × NCH2CH2CH2CH3),
1.52-1.72 (m, 4 H, 2 × NCH2CH2CH2CH3),
1.93 (dd, J = 15.0,
2.9 Hz, 1 H, HA2′), 2.72-2.74 (m, 1
H, HB2′), 1.88 (d, J = 6.1
Hz, 1 H, Hβ), 3.36 (t, J = 7.3
Hz, 2 H, NCH2CH2CH2CH3),
3.56-3.59 (m, 2 H, NCH2CH2CH2CH3),
3.66-3.71 (m, 2 H, H5′′), 3.89 (dd, J = 11.1,
3.9 Hz, 1 H, H5′), 4.01-4.02 (m, 1 H, H4′),
4.11-4.36 (m, 4 H, CH-Fmoc, Hα and CH2-Fmoc),
4.73 (d, J = 7.4 Hz,
1 H, H3′), 5.37 (d, J = 7.3
Hz, 1 H, NH-Fmoc), 5.88 (dd, J = 8.9,
3.5 Hz, 1 H, H1′), 6.49, 6.91 [2 d, J = 8.5 Hz,
4 H, H-o-Ph(OMe)], 7.10-7.80 [m,
18 H, ar (Fmoc and TBDPS)], 8.39 (s, 1 H, H2), 8.94 (s,
1 H, H8), 9.56 (s, 1 H, CH=N).
¹³C
NMR (70 MHz, CDCl3): δ = 13.6
(NCH2CH2CH2CH3), 13.8
(NCH2CH2CH2CH3), 19.1
(SiC), 19.7 (NCH2CH2CH2CH3),
20.1 (NCH2CH2CH2CH3),
23.4, 26.7 [(CH3)3], 29.2
(NCH2CH2CH2CH3), 30.9 (NCH2CH2CH2CH3),
38.1 (C2′), 38.7 (Cβ), 45.2 (NCH2CH2CH2CH3),
47.1 (CH-Fmoc), 48.8 (C3′), 51.8 (NCH2CH2CH2CH3),
57.1 (C5′5′′), 62.6 (OCH2 Fmoc),
66.8 (Cα), 82.7 (C4′), 84.5 (C1′), 113.6 [o-Ph(OMe)], 119.8, 125.0, 127.4,
127.5, 127.6, 128.3, 128.5, 130.2, 131.7, 131.8, 131.9, 131.9, 132.1,
133.1, 135.4, 135.5, 135.5, 141.2, 141.5, 143.7, 143.8 (Ar), 149.4
(C4), 151.8 (C2), 157.2 (C6), 157.2 (C=O), 158.3 (C8),
169.97 (CH=N). HRMS (ESI+): m/z calcd: 1049.5085 [M + Na]+;
found: 1049.5084.
9-(3′-
O
-Methyl-
l
-tyrosyl)amido-2′,3′-dideoxy-β-
d
-xylofuranosyl)adenine
(4)
Compound 9 (65 mg, 0.08
mmol) was dissolved in 33% MeNH2-EtOH
(8 mL), and the mixture was stirred overnight at r.t. in a closed
vessel. The solution was concentrated under reduced pressure, and
the residue was dissolved in MeOH (2 mL) and then NH4F
(16 mg, 0.43 mmol) was added. The reaction mixture was warmed to
50-55 ˚C for 4 h. The volatiles were
evaporated, and the residue was washed with EtOAc (3×)
and then purified by a preparative thin-layer column chromatography
using i-PrOH-NH3-H2O (8:0.5:0.5)
as the eluent to obtain 4 (24 mg, 90%). ¹H
NMR (300 MHz, CD3OD): δ = 1.95-2.01
(m, 1 H, HA2′), 2.67-2.77 (m, 2 H,
HB2′, Hβ), 3.44 (t, J = 7.2
Hz, 1 H, Hα), 3.49 (s, 3 H, OMe), 3.61-3.65 (m,
2 H, H5′5′′), 3.99 (dd, J = 9.7, 5.4
Hz, 1 H, H4′), 4.55-4.59 (m, 1 H, H3′),
6.03 (dd, J = 8.4, 5.1
Hz, 1 H, H1′), 6.58 [d, J = 8.6
Hz, 2 H, o-Ph(OMe)], 6.98 [d, J = 8.6 Hz,
2 H, m-Ph(OMe)], 8.05 (s, 1
H, H2), 8.11 (s, 1 H, H8). ¹³C NMR
(125 MHz, CD3OD): δ = 39.4
(C2′), 39.9 (Cβ), 50.8 (C3′), 55.6 (OMe),
57.1 (Cα), 61.8 (C5′5′′), 83.3
(C4′), 86.0 (C1′), 115.1 [2 × C-o-Ph(OMe)], 122.4 (C5), 127.9 [C-p-Ph(OMe)], 131.7 [2 × C-m-Ph(OMe)], 142.6 (C2), 148.9
(C4), 153.5 (C8), 157.7 (C6), 160.5 [C-i-Ph(OMe)],
169.9 (C=O). HRMS (ESI+): m/z calcd: 428.2046 [MH]+;
found: 428.2047.